1
|
Zhou LY, Zhang S, Li LY, Yang GY, Zeng L. Optimization of mammalian expression vector by cis-regulatory element combinations. Mol Genet Genomics 2023:10.1007/s00438-023-02042-0. [PMID: 37318628 DOI: 10.1007/s00438-023-02042-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
The regulation of gene expression in mammalian cells by combining various cis-regulatory features has rarely been discussed. In this study, we constructed expression vectors containing various combinations of regulatory elements to examine the regulation of gene expression by different combinations of cis-regulatory elements. The effects of four promoters (CMV promoter, PGK promoter, Polr2a promoter, and EF-1α core promoter), two enhancers (CMV enhancer and SV40 enhancer), two introns (EF-1α intron A and hybrid intron), two terminators (CYC1 terminator and TEF terminator), and their different combinations on downstream gene expression were compared in various mammalian cells using fluorescence microscopy to observe fluorescence, quantitative real-time PCR (qRT-PCR), and western blot. The receptor binding domain (RBD) sequence from severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein was used to replace the eGFP sequence in the expression vector and the RBD expression was detected by qRT-PCR and western blot. The results showed that protein expression can be regulated by optimizing the combination of cis-acting elements. The vector with the CMV enhancer, EF-1α core promoter, and TEF terminator was found to express approximately threefold higher eGFP than the unmodified vector in different animal cells, as well as 2.63-fold higher recombinant RBD protein than the original vector in HEK-293T cells. Moreover, we suggest that combinations of multiple regulatory elements capable of regulating gene expression do not necessarily exhibit synergistic effects to enhance expression further. Overall, our findings provide insights into biological applications that require the regulation of gene expression and will help to optimize expression vectors for biosynthesis and other fields. Additionally, we provide valuable insights into the production of RBD proteins, which may aid in developing reagents for diagnosis and treatment during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Lu-Yu Zhou
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Shuang Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Li-Yun Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Guo-Yu Yang
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China
| | - Lei Zeng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Biochemistry and Nutrition, Henan Agricultural University, Ministry of Agriculture and Rural Affairs, Zhengzhou, 450046, Henan, People's Republic of China.
- Key Laboratory of Animal Growth and Development, The Education Department of Henan Province, Zhengzhou, 450046, Henan, People's Republic of China.
| |
Collapse
|
2
|
Hou F, Liu K, Zhang N, Zou C, Yuan G, Gao S, Zhang M, Pan G, Ma L, Shen Y. Association mapping uncovers maize ZmbZIP107 regulating root system architecture and lead absorption under lead stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1015151. [PMID: 36226300 PMCID: PMC9549328 DOI: 10.3389/fpls.2022.1015151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/06/2022] [Indexed: 05/22/2023]
Abstract
Lead (Pb) is a highly toxic contaminant to living organisms and the environment. Excessive Pb in soils affects crop yield and quality, thus threatening human health via the food chain. Herein, we investigated Pb tolerance among a maize association panel using root bushiness (BSH) under Pb treatment as an indicator. Through a genome-wide association study of relative BSH, we identified four single nucleotide polymorphisms (SNPs) and 30 candidate genes associated with Pb tolerance in maize seedlings. Transcriptome analysis showed that four of the 30 genes were differentially responsive to Pb treatment between two maize lines with contrasting Pb tolerance. Among these, the ZmbZIP107 transcription factor was confirmed as the key gene controlling maize tolerance to Pb by using gene-based association studies. Two 5' UTR_variants in ZmbZIP107 affected its expression level and Pb tolerance among different maize lines. ZmbZIP107 protein was specifically targeted to the nucleus and ZmbZIP107 mRNA showed the highest expression in maize seedling roots among different tissues. Heterologous expression of ZmbZIP107 enhanced rice tolerance to Pb stress and decreased Pb absorption in the roots. Our study provided the basis for revelation of the molecular mechanism underlying Pb tolerance and contributed to cultivation of Pb-tolerant varieties in maize.
Collapse
|
3
|
TREML4 mRNA Expression and Polymorphisms in Blood Leukocytes are Associated with Atherosclerotic Lesion Extension in Coronary Artery Disease. Sci Rep 2019; 9:7229. [PMID: 31076644 PMCID: PMC6510738 DOI: 10.1038/s41598-019-43745-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 04/30/2019] [Indexed: 01/23/2023] Open
Abstract
Members of the triggering receptor expressed on myeloid cells (TREM) family are associated with atherosclerosis risk and progression. TREML4 is upregulated in the early phase of acute coronary syndrome. We investigated the relationship between the mRNA expression of 13 genes in blood leukocytes, TREML4 polymorphisms, and coronary artery lesion extension (Friesinger index) in patients with coronary artery disease (CAD) (n = 137). TREML4 rs2803495 (A > G) and rs2803496 (T > C) variants and leukocyte mRNA expression were analysed by qRT-PCR. TREML4 expression was higher in patients with major coronary artery lesions than in subjects without or with low and intermediate lesions (p < 0.05). However, TREML4 polymorphisms were not associated with coronary lesion extent. Presence of the rs2803495 G allele was not associated with increased TREML4 mRNA expression. Patients carrying the rs2803496 C allele (TC/CC genotypes) were more likely to express TREML4 mRNA than non-C allele carriers (allele C: OR 7.3, and 95% CI 1.9–27.5, p = 0.03). In conclusion, increased TREML4 mRNA expression in blood leukocytes is influenced by gene polymorphisms and is associated with more severe coronary artery lesions, suggesting its potential as a biomarker of the extent of coronary lesions in patients with CAD.
Collapse
|