1
|
Liu R, Xu H, Zhao S, Dong C, Li J, Wei G, Li G, Gong L, Yan P, Shao Z. Polyethylene terephthalate (PET)-degrading bacteria in the pelagic deep-sea sediments of the Pacific Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124131. [PMID: 38734049 DOI: 10.1016/j.envpol.2024.124131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/13/2024]
Abstract
Polyethylene terephthalate (PET) plastic pollution is widely found in deep-sea sediments. Despite being an international environmental issue, it remains unclear whether PET can be degraded through bioremediation in the deep sea. Pelagic sediments obtained from 19 sites across a wide geographic range in the Pacific Ocean were used to screen for bacteria with PET degrading potential. Bacterial consortia that could grow on PET as the sole carbon and energy source were found in 10 of the 19 sites. These bacterial consortia showed PET removal rate of 1.8%-16.2% within two months, which was further confirmed by the decrease of carbonyl and aliphatic hydrocarbon groups using attenuated total reflectance-Fourier-transform infrared analysis (ATR-FTIR). Analysis of microbial diversity revealed that Alcanivorax and Pseudomonas were predominant in all 10 PET degrading consortia. Meanwhile, Thalassospira, Nitratireductor, Nocardioides, Muricauda, and Owenweeksia were also found to possess PET degradation potential. Metabolomic analysis showed that Alcanivorax sp. A02-7 and Pseudomonas sp. A09-2 could turn PET into mono-(2-hydroxyethyl) terephthalate (MHET) even in situ stimulation (40 MPa, 10 °C) conditions. These findings widen the currently knowledge of deep-sea PET biodegrading process with bacteria isolates and degrading mechanisms, and indicating that the marine environment is a source of biotechnologically promising bacterial isolates and enzymes.
Collapse
Affiliation(s)
- Renju Liu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Haiming Xu
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Sufang Zhao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Chunming Dong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Jianyang Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Guangshan Wei
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Guangyu Li
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Linfeng Gong
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China
| | - Peisheng Yan
- School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources of China, State Key Laboratory Breeding Base of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Xiamen 361005, China; School of Environmental Science, Harbin Institute of Technology, Harbin 150090, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), China.
| |
Collapse
|
2
|
Jiang B, Chen Y, Xing Y, Lian L, Shen Y, Zhang B, Zhang H, Sun G, Li J, Wang X, Zhang D. Negative correlations between cultivable and active-yet-uncultivable pyrene degraders explain the postponed bioaugmentation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127189. [PMID: 34555764 DOI: 10.1016/j.jhazmat.2021.127189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an effective approach to remediate soils contaminated by polycyclic aromatic hydrocarbons (PAHs), but suffers from unsatisfactory performance in engineering practices, which is hypothetically explained by the complicated interactions between indigenous microbes and introduced degraders. This study isolated a cultivable pyrene degrader (Sphingomonas sp. YT1005) and an active pyrene degrading consortium (Gp16, Streptomyces, Pseudonocardia, Panacagrimonas, Methylotenera and Nitrospira) by magnetic-nanoparticle mediated isolation (MMI) from soils. Pyrene biodegradation was postponed in bioaugmentation with Sphingomonas sp. YT1005, whilst increased by 30.17% by the active pyrene degrading consortium. Pyrene dioxygenase encoding genes (nidA, nidA3 and PAH-RHDα-GP) were enriched in MMI isolates and positively correlated with pyrene degradation efficiency. Pyrene degradation by Sphingomonas sp. YT1005 only followed the phthalate pathway, whereas both phthalate and salicylate pathways were observed in the active pyrene degrading consortium. The results indicated that the uncultivable pyrene degraders were suitable for bioaugmentation, rather than cultivable Sphingomonas sp. YT1005. The negative correlations between Sphingomonas sp. YT1005 and the active-yet-uncultivable pyrene degraders were the underlying mechanisms of bioaugmentation postpone in engineering practices.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Yating Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Han Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junyi Li
- Department of Research and Development, Yiqing (Suzhou) Environmental Technology Co. Ltd, Suzhou 215163, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
3
|
Li G, Han Y, Zou Y, Lee JJC, Ni Y, Wu J. Dearomatization Approach Toward a Superbenzoquinone‐Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Johnathan Joo Cheng Lee
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|
4
|
Li G, Han Y, Zou Y, Lee JJC, Ni Y, Wu J. Dearomatization Approach Toward a Superbenzoquinone‐Based Diradicaloid, Tetraradicaloid, and Hexaradicaloid. Angew Chem Int Ed Engl 2019; 58:14319-14326. [DOI: 10.1002/anie.201907030] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 08/06/2019] [Indexed: 11/09/2022]
Affiliation(s)
- Guangwu Li
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yi Han
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Ya Zou
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Johnathan Joo Cheng Lee
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Yong Ni
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| | - Jishan Wu
- Department of Chemistry National University of Singapore 3 Science Drive 3 117543 Singapore Singapore
| |
Collapse
|