1
|
Liu YH, Mohamad OAA, Gao L, Xie YG, Abdugheni R, Huang Y, Li L, Fang BZ, Li WJ. Sediment prokaryotic microbial community and potential biogeochemical cycle from saline lakes shaped by habitat. Microbiol Res 2023; 270:127342. [PMID: 36848700 DOI: 10.1016/j.micres.2023.127342] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 02/19/2023] [Accepted: 02/20/2023] [Indexed: 02/23/2023]
Abstract
The microbial diversity and ecological function in different saline lakes was reduced or disappeared as the influence of climate change and human activities even before they were known. However, reports about prokaryotic microbial of saline lakes from Xinjiang are very limited especially in large-scale investigations. In this study, a total of 6 saline lakes represented three different habitats, including hypersaline lake (HSL), arid saline lake (ASL), and light saltwater lake (LSL) were involved. The distribution pattern and potential functions of prokaryotes were investigated by using the cultivation-independent method of amplicon sequencing. The results showed that Proteobacteria was the predominant community and was widely distributed in all kinds of saline lakes, Desulfobacterota was the representative community in hypersaline lakes, Firmicutes and Acidobacteriota were mainly distributed in arid saline lake samples, and Chloroflexi was more abundant in light saltwater lakes. Specifically, the archaeal community was mainly distributed in the HSL and ASL samples, whereas it was very rare in the LSL lakes. The functional group showed that fermentation was the main metabolic process of microbes in all saline lakes and covered 8 phyla, including Actinobacteriota, Bacteroidota, Desulfobacterota, Firmicutes, Halanaerobiaeota, Proteobacteria, Spirochaetota, and Verrucomicrobiota. Among the 15 functional phyla, Proteobacteria was a distinctly important community in saline lakes, as it exhibited wide functions in the biogeochemical cycle. According to the correlation of environmental factors, SO42-, Na+, CO32-, and TN were significantly affected in the microbial community from saline lakes in this study. Overall, our study provided more detailed information about microbial community composition and distribution from three different habitats of saline lakes, especially the potential functions of carbon, nitrogen, and sulfur cycles, which provided new insight for understanding the complex microbiota adapt to the extreme environment and new perspectives on evaluating microbial contributions to degraded saline lakes under environmental change.
Collapse
Affiliation(s)
- Yong-Hong Liu
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Xinjiang Key Laboratory of Conservation and Utilization of Plant Gene Resources, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, 830000 Urumqi, PR China
| | - Osama Abdalla Abdelshafy Mohamad
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; Department of Environmental Protection, Faculty of Environmental Agricultural Sciences, Arish University, Al-Arish 45511, Egypt
| | - Lei Gao
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yuan-Guo Xie
- Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, PR China
| | - Rashidin Abdugheni
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yin Huang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Bao-Zhu Fang
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| | - Wen-Jun Li
- State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China; State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, PR China.
| |
Collapse
|