1
|
Feng Y, Kang Y, Wang Z, Du C, Tan J, Zhao X, Qi G. Ralstonia solanacearum infection induces tobacco root to secrete chemoattractants to recruit antagonistic bacteria and defensive compounds to inhibit pathogen. PEST MANAGEMENT SCIENCE 2025; 81:1817-1828. [PMID: 39673161 DOI: 10.1002/ps.8581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/29/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Plant root exudates play crucial roles in maintaining the structure and function of the whole belowground ecosystem and regulating the interactions between roots and soil microorganisms. Ralstonia solanacearum causes bacterial wilt disease in many plants, while root exudate-mediated inhibition of pathogen infection is poorly understood. Here, we characterize the chemical divergence between root exudates of healthy and diseased tobacco plants and the effects of that variability on the rhizosphere microbial community and the occurrence of bacterial wilt. RESULTS Compared with the healthy plants, root exudates in diseased plants showed distinct exudation patterns and metabolite profiles including increased amounts of flavonoids, phenylpropanoids, terpenoids and defense-related hormones, as well as distinct bacterial community composition, as illustrated by an increased abundance of Ralstonia and decreased abundances of Bacillus and Streptomyces in diseased plants rhizosphere. Pathogen infection stimulated roots to secrete more defensive compounds to inhibit pathogen growth. Change of root exudates modulated rhizosphere microbial community. Specific root exudates could benefit plants by attracting antagonistic Bacillus amyloliquefaciens and inhibiting pathogens. Bacillus amyloliquefaciens could utilize specific root exudates as carbon sources. Benzyl cinnamatel promoted the biofilm formation and colonization of B. amyloliquefaciens on roots. CONCLUSION To defend against pathogen invasion, tobacco plants recruited antagonistic and plant growth-promoting rhizobacteria to the rhizosphere by modifying root exudate profiles. Specific signal molecules are recommended to recruit beneficial microorganisms for controlling bacterial wilt. The results provide insights concerning the metabolic divergence of root exudates integral to understanding root-microorganism interaction. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yali Feng
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yue Kang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhibo Wang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chenyang Du
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jun Tan
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiuyun Zhao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Gaofu Qi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
2
|
Wang B, Guo Y, Chen X, Ma J, Lei X, Wang W, Long Y. Assessment of the Biocontrol Potential of Bacillus velezensis WL-23 against Kiwifruit Canker Caused by Pseudomonas syringae pv. actinidiae. Int J Mol Sci 2023; 24:11541. [PMID: 37511299 PMCID: PMC10380555 DOI: 10.3390/ijms241411541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Kiwifruit canker disease, caused by Pseudomonas syringae pv. actinidiae (Psa), is the main threat to kiwifruit production worldwide. Currently, there is no safe and effective disease prevention method; therefore, biological control technologies are being explored for Psa. In this study, Bacillus velezensis WL-23 was isolated from the leaf microbial community of kiwifruit and used to control kiwifruit cankers. Indoor confrontation experiments showed that both WL-23 and its aseptic filtrate had excellent inhibitory activity against the main fungal and bacterial pathogens of kiwifruit. Changes in OD600, relative conductivity, alkaline proteinase, and nucleic acid content were recorded during Psa growth after treatment with the aseptic filtrate, showing that Psa proliferation was inhibited and the integrity of the cell membrane was destroyed; this was further verified using scanning electron microscopy and transmission electron microscopy. In vivo, WL-23 promoted plant growth, increased plant antioxidant enzyme activity, and reduced canker incidence. Therefore, WL-23 is expected to become a biological control agent due to its great potential to contribute to sustainable agriculture.
Collapse
Affiliation(s)
- Bingce Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Yushan Guo
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xuetang Chen
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Jiling Ma
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xia Lei
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Weizhen Wang
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Youhua Long
- Research Center for Engineering Technology of Kiwifruit, College of Agriculture, Guizhou University, Guiyang 550025, China
- Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, China
| |
Collapse
|
3
|
Chen W, Wu Z, He Y. Isolation, purification, and identification of antifungal protein produced by Bacillus subtilis SL-44 and anti-fungal resistance in apple. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:62080-62093. [PMID: 36932310 DOI: 10.1007/s11356-023-26158-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 02/23/2023] [Indexed: 05/10/2023]
Abstract
Apple anthracnose is a fruit fungal disease that is currently recognized as one of the most severe threats to apples worldwide. In this study, antifungal protein from Bacillus subtilis SL-44 was isolated, purified, identified, and applied for Colletotrichum gloeosporioides control. The antagonistic experiment showed that SL-44 had an excellent broad spectrum against plant pathogenic fungi. The optimal fermentation conditions were as follows: initial pH was 7, inoculum volume was 2%, and rotational speed was 180 r/min. The optimized yield of antifungal protein increased by 45.83% compared with that before. The crude protein was isolated and purified by (NH4)2SO4 precipitation, DEAE-Sepharose Fast Flow, and Sephadex G-100 column chromatography. LC-MS analyzed that antifungal protein was likely to be a novel protein with a molecular weight of 42 kDa. The mechanism revealed that the antifungal protein may disrupt the cell wall structure of C. gloeosporioides and function as its antifungal action. Additionally, antifungal protein significantly alleviated the size of the lesion to more than 70% in the apple infection protection test. In conclusion, antifungal protein has remarkable potential in developing fungicides for the biological control of apple anthracnose. HIGHLIGHTS: 1. B. subtilis SL-44 had broad-spectrum antagonism against plant pathogenic fungi. 2. The optimal fermentation conditions for extracting antifungal protein were optimized. 3. The antifungal protein is a novel protein with a molecular weight of 42 kDa. 4. The mechanism of antifungal protein may disrupt the cell wall structure of C. gloeosporioides.
Collapse
Affiliation(s)
- Wumei Chen
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| | - Zhansheng Wu
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China.
| | - Yanhui He
- School of Environmental and Chemical Engineering, Xi'an Key Laboratory of Textile Chemical Engineering Auxiliaries, Xi'an Polytechnic University, Xi'an, 710048, People's Republic of China
| |
Collapse
|
4
|
Evaluation of the Membrane Damage Mechanism of Chlorogenic Acid against Yersinia enterocolitica and Enterobacter sakazakii and Its Application in the Preservation of Raw Pork and Skim Milk. Molecules 2021; 26:molecules26216748. [PMID: 34771154 PMCID: PMC8587693 DOI: 10.3390/molecules26216748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/02/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022] Open
Abstract
Plant-derived antimicrobial agents have adequate antimicrobial effects on food-borne pathogens, which can be used as food preservatives. The purpose of this study was to evaluate the antibacterial mechanism of chlorogenic acid (CA) against Yersinia enterocolitica and Enterobacter sakazakii. The minimum inhibitory concentration (MIC) of CA was determined by employing the broth microdilution method. Then, the cell function and morphological changes of Y. enterocolitica and E. sakazakii treated with CA were characterized. Finally, the growth inhibition models of Y. enterocolitica in raw pork and E. sakazakii in skim milk were constructed through the response surface methodology. The results demonstrated that CA has a satisfactory inhibitory effect against Y. enterocolitica and E. sakazakii with a MIC of 2.5 mg/mL. In addition, CA inhibited the growth of Y. enterocolitica and E. sakazakii via cell membrane damage, such as depolarization of the cell membrane, reduction in intracellular adenosine triphosphate (ATP) and pH levels, and destruction of cell morphology. Moreover, CA reduced two log cycles of Y. enterocolitica in raw pork and E. sakazakii in skim milk at a certain temperature. According to the corresponding findings, CA has the potential to be developed as an effective preservative to control Y. enterocolitica and E. sakazakii-associated foodborne diseases.
Collapse
|