1
|
Ferrante M, Gallo MB, Gende LB, Consolo VF, Álvarez VA, González JS. Synthesis and characterization of gelatin/chondroitin sulfate microgels with NaCl: Preliminary research toward wound healing applications. Int J Biol Macromol 2025; 290:138953. [PMID: 39706417 DOI: 10.1016/j.ijbiomac.2024.138953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 12/03/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Gelatin and chondroitin sulfate are natural polymers with significant potential in the biomedical field, particularly for wound healing applications. They can form hydrogels that absorb exudates and exhibit anti-inflammatory and antioxidant properties. Silver nanoparticles (AgNPs) can be used as antibacterial agents in wound management. Moreover, the addition of NaCl may enhance the efficacy and mechanical properties of the microgels. This study focuses on the synthesis and characterization of gelatin/chondroitin sulfate powder hydrogels, both with and without AgNPs, obtained through fungal digestion and NaCl for potential acute wound healing application. As a result, AgNPs were successfully synthesized, they are spherical with an average size of 19 ± 6 nm. Microgels were obtained via electrostatic interactions and processed using spray drying equipment, the highest yield was 50.2 ± 7.1 %. Characterization results indicated that the composition significantly influenced the yield percentage, which was greater in samples containing NaCl. Moreover, particle areas varied significantly from 6.0 ± 1.3 μm2 to 85.6 ± 35.9 μm2 with the incorporation of salt. Swelling capacities were similar over time, with highest values at 15 min exceeding 500 % under physiological conditions. Notably, microgels exhibited enhanced disintegration resistance compared to gelatin alone, making them suitable for sustained wound coverage. The incorporation of AgNPs conferred notable antimicrobial activity; however, it adversely affected erythrocyte viability. Therefore, microgels without AgNPs, particularly those containing NaCl, may be suitable for acute wounds management, while alternative methods or lower concentrations of AgNPs may be required to retain antibacterial properties.
Collapse
Affiliation(s)
- Micaela Ferrante
- Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina.
| | - Micaela B Gallo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata, CP7600, Argentina
| | - Liesel B Gende
- Instituto de Investigaciones en Producción, Sanidad y Ambiente (IIPROSAM), Universidad Nacional de Mar del Plata, Mar del Plata CP7600, Argentina
| | - Verónica F Consolo
- Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Vieytes 3103, Mar del Plata, CP7600, Argentina
| | - Vera A Álvarez
- Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina
| | - Jimena S González
- Grupo de Materiales Compuestos Termoplásticos (COMP), Instituto de ciencia y tecnología de Materiales (INTEMA), Universidad Nacional de Mar del Plata (UNMdP) y Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Colón 10890, 7600 Mar del Plata, Buenos Aires, Argentina
| |
Collapse
|
2
|
Salaheldin H, Aboelnga A, Elsayed A. Mycosynthesis of zinc sulfide/zinc oxide nanocomposite using Fusarium oxysporum for catalytic degradation of methylene blue dye, antimicrobial, and anticancer activities. Sci Rep 2024; 14:32165. [PMID: 39741154 PMCID: PMC11688424 DOI: 10.1038/s41598-024-81855-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
In the present study, extracellular cell-free filtrate (CFF) of fungal Fusarium oxysporum f. sp. cucumerinum (FOC) species, was utilized to biosynthesize zinc oxide /zinc sulfide (ZnO/ZnS) nanocomposite. This was achieved by mixing the metal salt with the fungal CFF for 96 h at a temperature of 27 ± 1.0 °C and a pH of 6.5. Several analytical techniques, such as XRD, TEM, UV-Vis, FTIR, DLS, and zeta potential studies, have confirmed the synthesis of NPs. Fungal CFF enzymes and metabolites stabilized produced NPs, according to FTIR. The nanocomposite particle diameter (15-80 nm) was estimated using HR-TEM imaging. The DLS and XRD measurements verified those findings. The zone of inhibition diameter for MRSA was 35 ± 0.21 mm, while B. subtilis measured 33 ± 0.32 mm against the nanocomposite. For E. coli and S. typhi bacterial isolates, it was 25 ± 0.19 and 32 ± 0.36 mm, respectively. The determined MIC value for E. coli was 5,000 µg/mL and MRSA was 500 µg/mL. The ZnO/ZnS nanocomposite has a dose-dependent cytotoxic effect on breast cancer cells, with an IC50 of 197 ± 0.895 µg/mL. The Methylene blue dye was removed by 87.51% using the nanocomposite. Thus, green biosynthesized ZnO/ZnS nanocomposites are recommended for pharmaceutical, industrial, and biological applications.
Collapse
Affiliation(s)
- Hosam Salaheldin
- Biophysics Research Group, Faculty of Science, Physics Department, Mansoura University, Mansoura, 35516, Egypt.
| | - Aya Aboelnga
- Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf Elsayed
- Faculty of Science, Botany Department, Mansoura University, Mansoura, 35516, Egypt
| |
Collapse
|
3
|
Herrera Pérez GM, Castellano LE, Ramírez Valdespino CA. Trichoderma and Mycosynthesis of Metal Nanoparticles: Role of Their Secondary Metabolites. J Fungi (Basel) 2024; 10:443. [PMID: 39057328 PMCID: PMC11278454 DOI: 10.3390/jof10070443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 05/24/2024] [Accepted: 05/28/2024] [Indexed: 07/28/2024] Open
Abstract
Nanocompounds are widely used in many fields such as environmental, medicine, or agriculture. Nowadays, these nanocompounds are mainly synthesized by chemical methods, causing environmental pollution and potential health problems. Thus, microorganisms have been investigated as potential nanoparticle green biosynthesizers. The main research is focused on the synthesis of nanoparticles (NPs) using algae, yeast, bacteria, and fungi. Among them, fungi have been the most used, due to their simple and effective mycosynthesis. Fungi as well as other organisms involved in green synthesis of NPs use their secondary metabolites (SMs) to mediate and catalyze the reactions to produce metal nanoparticles (MNPs) as well as being able to act as capping agents producing different physicochemical characteristics and biological activities in the MNPs. Among the various fungi used for mycosynthesis are Trichoderma species, which mediate the production of Ag, Cu, CuO, Zn, ZnO, and other MNPs. Here, we review the main SMs from Trichoderma that have been reported or suggested to contribute to synthesize or act as capping agents and their applications, as well as present the main challenges faced by this type of synthesis.
Collapse
Affiliation(s)
- Guillermo M. Herrera Pérez
- Consejo Nacional de Humanidades, Ciencias y Tecnologías (CONAHCYT), Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico;
| | - Laura E. Castellano
- División de Ciencias e Ingenierías Campus León, Universidad de Guanajuato, Loma del Bosque #103, Lomas del Campestre, León de los Aldama 37150, Gto., Mexico;
| | - Claudia A. Ramírez Valdespino
- Centro de Investigación en Materiales Avanzados, S. C. (CIMAV), Av. Miguel de Cervantes #120, Complejo Industrial Chihuahua, Chihuahua 31136, Chih., Mexico
| |
Collapse
|
4
|
Tomah AA, Zhang Z, Alamer ISA, Khattak AA, Ahmed T, Hu M, Wang D, Xu L, Li B, Wang Y. The Potential of Trichoderma-Mediated Nanotechnology Application in Sustainable Development Scopes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2475. [PMID: 37686983 PMCID: PMC10490099 DOI: 10.3390/nano13172475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/26/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023]
Abstract
The environmental impact of industrial development has been well-documented. The use of physical and chemical methods in industrial development has negative consequences for the environment, raising concerns about the sustainability of this approach. There is a growing need for advanced technologies that are compatible with preserving the environment. The use of fungi products for nanoparticle (NP) synthesis is a promising approach that has the potential to meet this need. The genus Trichoderma is a non-pathogenic filamentous fungus with a high degree of genetic diversity. Different strains of this genus have a variety of important environmental, agricultural, and industrial applications. Species of Trichoderma can be used to synthesize metallic NPs using a biological method that is environmentally friendly, low cost, energy saving, and non-toxic. In this review, we provide an overview of the role of Trichoderma metabolism in the synthesis of metallic NPs. We discuss the different metabolic pathways involved in NP synthesis, as well as the role of metabolic metabolites in stabilizing NPs and promoting their synergistic effects. In addition, the future perspective of NPs synthesized by extracts of Trichoderma is discussed, as well as their potential applications in biomedicine, agriculture, and environmental health.
Collapse
Affiliation(s)
- Ali Athafah Tomah
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, College of Agriculture, University of Misan, Al-Amarah 62001, Iraq
| | - Zhen Zhang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| | - Iman Sabah Abd Alamer
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Plant Protection, Agriculture Directorate, Al-Amarah 62001, Iraq
| | - Arif Ali Khattak
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
- Xianghu Laboratory, Hangzhou 311231, China
| | - Minjun Hu
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China;
| | - Daoze Wang
- Hangzhou Rural Revitalization Service Center, Hangzhou 310020, China;
| | - Lihui Xu
- Institute of Eco-Environmental Protection, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China; (I.S.A.A.); (A.A.K.); (T.A.); (B.L.)
| | - Yanli Wang
- State Key Laboratory for Quality and Safety of Agro-Products, Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (A.A.T.); (Z.Z.)
| |
Collapse
|
5
|
Beltrán Pineda ME, Lizarazo Forero LM, Sierra YCA. Mycosynthesis of silver nanoparticles: a review. Biometals 2023; 36:745-776. [PMID: 36482125 DOI: 10.1007/s10534-022-00479-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Metallic nanoparticles currently show multiple applications in the industrial, clinical and environmental fields due to their particular physicochemical characteristics. Conventional approaches for the synthesis of silver nanoparticles (AgNPs) are based on physicochemical processes which, although they show advantages such as high productivity and good monodispersity of the nanoparticles obtained, have disadvantages such as the high energy cost of the process and the use of harmful radiation or toxic chemical reagents that can generate highly polluting residues. Given the current concern about the environment and the potential cytotoxic effects of AgNPs, once they are released into the environment, a new green chemistry approach to obtain these nanoparticles called biosynthesis has emerged. This new alternative process counteracts some limitations of conventional synthesis methods, using the metabolic capabilities of living beings to manufacture nanomaterials, which have proven to be more biocompatible than their counterparts obtained by traditional methods. Among the organisms used, fungi are outstanding and are therefore being explored as potential nanofactories in an area of research known as mycosynthesis. For all the above, this paper aims to illustrate the advances in state of the art in the mycosynthesis of AgNPs, outlining the two possible mechanisms involved in the process, as well as the AgNPs stabilizing substances produced by fungi, the variables that can affect mycosynthesis at the in vitro level, the applications of AgNPs obtained by mycosynthesis, the patents generated to date in this field, and the limitations encountered by researchers in the area.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Universidad Nacional de Colombia- Doctorado en Biotecnología- Grupo de Investigación en Macromoléculas UN- Grupo de Investigación Biología Ambiental UPTC. Grupo de Investigación Gestión Ambiental Universidad de Boyacá, Tunja, Colombia.
| | - Luz Marina Lizarazo Forero
- Universidad Pedagógica y Tecnológica de Colombia- Grupo de Investigación Biología Ambiental, Tunja, Colombia
| | - Y Cesar A Sierra
- Universidad Nacional de Colombia. Grupo de Investigación en Macromoléculas, Bogotá, Colombia
| |
Collapse
|
6
|
Choudhary N, Dhingra N, Gacem A, Yadav VK, Verma RK, Choudhary M, Bhardwaj U, Chundawat RS, Alqahtani MS, Gaur RK, Eltayeb LB, Al Abdulmonem W, Jeon BH. Towards further understanding the applications of endophytes: enriched source of bioactive compounds and bio factories for nanoparticles. FRONTIERS IN PLANT SCIENCE 2023; 14:1193573. [PMID: 37492778 PMCID: PMC10364642 DOI: 10.3389/fpls.2023.1193573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/31/2023] [Indexed: 07/27/2023]
Abstract
The most significant issues that humans face today include a growing population, an altering climate, an growing reliance on pesticides, the appearance of novel infectious agents, and an accumulation of industrial waste. The production of agricultural goods has also been subject to a great number of significant shifts, often known as agricultural revolutions, which have been influenced by the progression of civilization, technology, and general human advancement. Sustainable measures that can be applied in agriculture, the environment, medicine, and industry are needed to lessen the harmful effects of the aforementioned problems. Endophytes, which might be bacterial or fungal, could be a successful solution. They protect plants and promote growth by producing phytohormones and by providing biotic and abiotic stress tolerance. Endophytes produce the diverse type of bioactive compounds such as alkaloids, saponins, flavonoids, tannins, terpenoids, quinones, chinones, phenolic acids etc. and are known for various therapeutic advantages such as anticancer, antitumor, antidiabetic, antifungal, antiviral, antimicrobial, antimalarial, antioxidant activity. Proteases, pectinases, amylases, cellulases, xylanases, laccases, lipases, and other types of enzymes that are vital for many different industries can also be produced by endophytes. Due to the presence of all these bioactive compounds in endophytes, they have preferred sources for the green synthesis of nanoparticles. This review aims to comprehend the contributions and uses of endophytes in agriculture, medicinal, industrial sectors and bio-nanotechnology with their mechanism of action.
Collapse
Affiliation(s)
- Nisha Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Naveen Dhingra
- Department of Agriculture, Medi-Caps University, Pigdamber Road, Rau, Indore, Madhya Pradesh, India
| | - Amel Gacem
- Department of Physics, Faculty of Sciences, University 20 Août 1955, Skikda, Algeria
| | - Virendra Kumar Yadav
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
- Department of Life Sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, India
| | - Rakesh Kumar Verma
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mahima Choudhary
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Uma Bhardwaj
- Department of Biotechnology, Noida International University, Noida, U.P., India
| | - Rajendra Singh Chundawat
- Dept of Biosciences, School of Liberal Arts and Sciences, Mody University of Science and Technology, Lakshmangarh, Sikar, Rajasthan, India
| | - Mohammed S. Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, University of Leicester, Leicester, United Kingdom
| | - Rajarshi Kumar Gaur
- Department of Biotechnology, Deen Dayal Upadhyaya (D.D.U.) Gorakhpur University, Gorakhpur, Uttar Pradesh, India
| | - Lienda Bashier Eltayeb
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam Bin AbdulAziz University- Al-Kharj, Riyadh, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Chaudhary V, Chowdhury R, Thukral P, Pathania D, Saklani S, Rustagi S, Gautam A, Mishra YK, Singh P, Kaushik A. Biogenic green metal nano systems as efficient anti-cancer agents. ENVIRONMENTAL RESEARCH 2023; 229:115933. [PMID: 37080272 DOI: 10.1016/j.envres.2023.115933] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 05/03/2023]
Abstract
Metal/metal oxide nano systems (M-NSs) of tunable and manipulative properties are emerging suitable for cancer management via immunity development, early-stage diagnosis, nanotherapeutics, and targeted drug delivery systems. However, noticeable toxicity, off-targeted actions, lacking biocompatibility, and being expensive limit their acceptability. Moreover, involving high energy (top-down routes) and hazardous chemicals (bottom-up chemical routes) is altering human cycle. To manage such challenges, biomass (plants, microbes, animals) and green chemistry-based M-NSs due to scalability, affordability, are cellular, tissue, and organ acceptability are emerging as desired biogenic M-NSs for cancer management with enhanced features. The state-of-art and perspective of green metal/metal oxide nano systems (GM-NSs) as an efficient anti-cancer agent including, imaging, immunity building elements, site-specific drug delivery, and therapeutics developments are highlighted in this review critically. It is expected that this report will serve as guideline for design and develop high-performance GM-NSs for establishing them as next-generation anti-cancer agent capable to manage cancer in personalized manner.
Collapse
Affiliation(s)
- Vishal Chaudhary
- Research Cell & Physics Department, Bhagini Nivedita College, University of Delhi, Delhi, India; SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India.
| | - Ruchita Chowdhury
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Chemistry, Netaji Subhas University of Technology, New Delhi, 110078, India
| | - Prachi Thukral
- SUMAN Laboratory (SUstainable Materials and Advanced Nanotechnology Lab), New Delhi, 110072, India; Department of Applied Chemistry, Delhi Technological University, New Delhi, 110042, India
| | - Diksha Pathania
- Animal Nutrition Division, ICAR-National Dairy Research Institute, Karnal, 132001, India
| | - Shivani Saklani
- School of Biological and Environmental Sciences, Shoolini University, Solan, 173229, India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University, Dehradun, Uttrakhand, India
| | - Akash Gautam
- Centre for Neural and Cognitive Sciences, University of Hyderabad, Hyderabad, 500046, India.
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, Alison 2, 6400, Sønderborg, Denmark
| | - Pardeep Singh
- School of Advanced Chemical Sciences, Shoolini University, Solan, 173229, India
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL, 33805, USA; School of Engineering, University of Petroleum and Energy Studies, Dehradun 248007, India.
| |
Collapse
|
8
|
Anti-Melanogenic Potential of Natural and Synthetic Substances: Application in Zebrafish Model. Molecules 2023; 28:molecules28031053. [PMID: 36770722 PMCID: PMC9920495 DOI: 10.3390/molecules28031053] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/21/2023] Open
Abstract
Melanogenesis is a biosynthetic pathway for the formation of the pigment melanin in human skin. A key enzyme in the process of pigmentation through melanin is tyrosinase, which catalyzes the first and only limiting step in melanogenesis. Since the discovery of its methanogenic properties, tyrosinase has been the focus of research related to the anti-melanogenesis. In addition to developing more effective and commercially safe inhibitors, more studies are required to better understand the mechanisms involved in the skin depigmentation process. However, in vivo assays are necessary to develop and validate new drugs or molecules for this purpose, and to accomplish this, zebrafish has been identified as a model organism for in vivo application. In addition, such model would allow tracking and studying the depigmenting activity of many bioactive compounds, important to genetics, medicinal chemistry and even the cosmetic industry. Studies have shown the similarity between human and zebrafish genomes, encouraging their use as a model to understand the mechanism of action of a tested compound. Interestingly, zebrafish skin shares many similarities with human skin, suggesting that this model organism is suitable for studying melanogenesis inhibitors. Accordingly, several bioactive compounds reported herein for this model are compared in terms of their molecular structure and possible mode of action in zebrafish embryos. In particular, this article described the main metabolites of Trichoderma fungi, in addition to substances from natural and synthetic sources.
Collapse
|
9
|
A Novel Ag@AgCl Nanoparticle Synthesized by Arctic Marine Bacterium: Characterization, Activity and Mechanism. Int J Mol Sci 2022; 23:ijms232415558. [PMID: 36555211 PMCID: PMC9779459 DOI: 10.3390/ijms232415558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
An additive- and pollution-free method for the preparation of biogenic silver and silver chloride nanoparticles (Ag@AgCl NPs) was developed from the bacteria Shewanella sp. Arc9-LZ, which was isolated from the deep sea of the Arctic Ocean. The optimal synthesizing conditions were explored, including light, pH, Ag+ concentration and time. The nanoparticles were studied by means of ultraviolet-visible (UV-Vis) spectrophotometry, energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and inductively coupled plasma optical emission spectrometers (ICP-OES). The transmission electron microscope (TEM) showed that the nanoparticles were spherical and well dispersed, with particle sizes less than 20.00 nm. With Ag@AgCl nanoparticles, the kinetic rate constants for congo red (CR) and rhodamine B (RhB) dye degradation were 2.74 × 10-1 min-1 and 7.78 × 10-1 min-1, respectively. The maximum decolourization efficiencies of CR and RhB were 93.36% and 99.52%, respectively. Ag@AgCl nanoparticles also showed high antibacterial activities against the Gram-positive and Gram-negative bacteria. The Fourier transform infrared spectroscopy (FTIR) spectrum indicated that the O-H, N-H and -COO- groups in the supernatant of Arc9-LZ might participate in the reduction, stabilization and capping of nanoparticles. We mapped the schematic diagram on possible mechanisms for synthesizing Ag@AgCl NPs.
Collapse
|
10
|
Bala S, Garg D, Thirumalesh BV, Sharma M, Sridhar K, Inbaraj BS, Tripathi M. Recent Strategies for Bioremediation of Emerging Pollutants: A Review for a Green and Sustainable Environment. TOXICS 2022; 10:toxics10080484. [PMID: 36006163 PMCID: PMC9413587 DOI: 10.3390/toxics10080484] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 05/04/2023]
Abstract
Environmental pollution brought on by xenobiotics and other related recalcitrant compounds have recently been identified as a major risk to both human health and the natural environment. Due to their toxicity and non-biodegradability, a wide range of pollutants, such as heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals are present in the environment. Bioremediation is an effective cleaning technique for removing toxic waste from polluted environments that is gaining popularity. Various microorganisms, including aerobes and anaerobes, are used in bioremediation to treat contaminated sites. Microorganisms play a major role in bioremediation, given that it is a process in which hazardous wastes and pollutants are eliminated, degraded, detoxified, and immobilized. Pollutants are degraded and converted to less toxic forms, which is a primary goal of bioremediation. Ex situ or in situ bioremediation can be used, depending on a variety of factors, such as cost, pollutant types, and concentration. As a result, a suitable bioremediation method has been chosen. This review focuses on the most recent developments in bioremediation techniques, how microorganisms break down different pollutants, and what the future holds for bioremediation in order to reduce the amount of pollution in the world.
Collapse
Affiliation(s)
- Saroj Bala
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Diksha Garg
- Department of Microbiology, Punjab Agriculture University, Ludhiana 141001, India
| | - Banjagere Veerabhadrappa Thirumalesh
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, India
| | - Minaxi Sharma
- Laboratoire de Chimie Verte et Produits Biobasés, Département Agro Bioscience et Chimie, Haute Ecole Provinciale de Hainaut-Condorcet, 11 Rue de la Sucrerie, 7800 Ath, Belgium
| | - Kandi Sridhar
- UMR1253, Science et Technologie du Lait et de l’œuf, INRAE, L’Institut Agro Rennes-Angers, 65 Rue de Saint Brieuc, F-35042 Rennes, France
| | - Baskaran Stephen Inbaraj
- Department of Food Science, Fu Jen Catholic University, New Taipei City 24205, Taiwan
- Correspondence: (B.S.I.); (M.T.)
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya 224001, India
- Correspondence: (B.S.I.); (M.T.)
| |
Collapse
|
11
|
Skanda S, Bharadwaj PSJ, Datta Darshan VM, Sivaramakrishnan V, Vijayakumar BS. Proficient mycogenic synthesis of silver nanoparticles by soil derived fungus Aspergillus melleus SSS-10 with cytotoxic and antibacterial potency. J Microbiol Methods 2022; 199:106517. [PMID: 35697186 DOI: 10.1016/j.mimet.2022.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 06/05/2022] [Accepted: 06/07/2022] [Indexed: 12/27/2022]
Abstract
The present study aimed at evaluating the extracellular synthesis of silver nanoparticles by soil fungus Aspergillus melleus SSS-10 for antibacterial and cytotoxic activity. In this study, the formation of silver nanoparticles (AgNPs) was estimated by the colour change in cell free extract from pale yellow to golden yellow after 24 h of the reaction. UV-Vis study showed the absorbance maxima at 410 nm. Tauc plot analysis revealed the band gap energy as 2.34 eV. Dynamic Light Scattering (DLS) data revealed polydisperse anisotropic silver nanoparticles with average hydrodynamic diameter of 92.006 nm. Zeta potential of - 19.6 mV provided evidence of stable silver nanoparticles. X-ray diffraction (XRD) analysis revealed four prominent Bragg peaks corresponding to (111), (200), (220) and (311) planes characteristic of silver (Ag) in FCC structural configuration. Average crystallite size was found to be 87.3 nm from Scherrer equation. Scanning Electron Microscope (SEM) analysis revealed irregular morphology of silver nanoparticles. EDS analysis displayed characteristic energy peaks of silver from 2.72 keV to 3.52 keV confirming the presence of silver nanoparticles. Biosynthesized AgNPs exhibited strong cytotoxic potential on MG-63 cells. AgNPs also showed antibacterial activity against both Staphylococcus aureus and Escherichia coli. In conclusion, this study provides a platform to explore the utility of fungal mediated silver nanoparticles synthesized for various pharmaceutical and cosmeceutical applications.
Collapse
Affiliation(s)
- S Skanda
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - P S J Bharadwaj
- Department of Physics, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - V M Datta Darshan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - Venketesh Sivaramakrishnan
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| | - B S Vijayakumar
- Department of Biosciences, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam Campus, Puttaparthi 515134, Andhra Pradesh, India.
| |
Collapse
|
12
|
Yaraki MT, Zahed Nasab S, Zare I, Dahri M, Moein Sadeghi M, Koohi M, Tan YN. Biomimetic Metallic Nanostructures for Biomedical Applications, Catalysis, and Beyond. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Shima Zahed Nasab
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 143951561, Iran
| | - Iman Zare
- Research and Development Department, Sina Medical Biochemistry Technologies Co. Ltd., Shiraz 7178795844, Iran
| | - Mohammad Dahri
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Mohammad Moein Sadeghi
- Student Research Committee, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz 71345, Iran
| | - Maedeh Koohi
- Department of Chemistry, Faculty of Science, University of Zanjan, Zanjan 45371-38791, Islamic Republic of Iran
| | - Yen Nee Tan
- Faculty of Science, Agriculture and Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, U.K
- Newcastle Research and Innovation Institute, Newcastle University in Singapore, 80 Jurong East Street 21, No. 05-04, 609607, Singapore
| |
Collapse
|
13
|
Pineda MEB, Lizarazo Forero LM, Sierra Avila CA. Antibacterial activity of biosynthesized silver nanoparticles (AgNps) against Pectobacterium carotovorum. Braz J Microbiol 2022; 53:1175-1186. [PMID: 35486355 PMCID: PMC9433472 DOI: 10.1007/s42770-022-00757-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/09/2022] [Indexed: 11/02/2022] Open
Abstract
In a bioprospecting study of paramo soils cultivated with potato (Solanum tuberosum), 50 fungal isolates were obtained and evaluated for their nitrate reductase (NR) activity, given the role played by this enzyme in the biosynthesis of silver nanoparticles (AgNps). Five isolates strain with high NR activity belonging to Penicillium simplicissimum, Aspergillus niger, and Fusarium oxysporum species were selected, verifying the presence of the NR enzyme in their enzymatic extract. Later, these strains showed the ability to biosynthesize AgNps with distorted spherical shapes and sizes ranging from 15 to 45 nm. Subsequently, an antibiosis test was carried out by the agar diffusion method using glass fiber disks against the phytopathogenic agent Pectobacterium carotovorum, finding halos of inhibition of bacterial growth up to 15.3 mm using a 100 ppm solution of the AgNps obtained from F. oxysporum. These results contribute to generating the basis of a new alternative for the control of this phytopathogenic agent of potato, challenging to manage by traditional methods and of relevance at the post-harvest level.
Collapse
Affiliation(s)
- Mayra Eleonora Beltrán Pineda
- Doctorado en Biotecnología UN, Grupo de Investigación en Macromoléculas UN, Grupo de Investigación Biología Ambiental UPTC, Grupo de investigación Gestión Ambiental- Universidad de Boyacá, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Luz Marina Lizarazo Forero
- Grupo de Investigación Biología Ambiental, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.
| | | |
Collapse
|
14
|
Alghuthaymi MA, Abd-Elsalam KA, AboDalam HM, Ahmed FK, Ravichandran M, Kalia A, Rai M. Trichoderma: An Eco-Friendly Source of Nanomaterials for Sustainable Agroecosystems. J Fungi (Basel) 2022; 8:367. [PMID: 35448598 PMCID: PMC9027617 DOI: 10.3390/jof8040367] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/21/2022] [Accepted: 03/31/2022] [Indexed: 02/01/2023] Open
Abstract
Traditional nanoparticle (NP) synthesis methods are expensive and generate hazardous products. It is essential to limit the risk of toxicity in the environment from the chemicals as high temperature and pressure is employed in chemical and physical procedures. One of the green strategies used for sustainable manufacturing is microbial nanoparticle synthesis, which connects microbiology with nanotechnology. Employing biocontrol agents Trichoderma and Hypocrea (Teleomorphs), an ecofriendly and rapid technique of nanoparticle biosynthesis has been reported in several studies which may potentially overcome the constraints of the chemical and physical methods of nanoparticle biosynthesis. The emphasis of this review is on the mycosynthesis of several metal nanoparticles from Trichoderma species for use in agri-food applications. The fungal-cell or cell-extract-derived NPs (mycogenic NPs) can be applied as nanofertilizers, nanofungicides, plant growth stimulators, nano-coatings, and so on. Further, Trichoderma-mediated NPs have also been utilized in environmental remediation approaches such as pollutant removal and the detection of pollutants, including heavy metals contaminants. The plausible benefits and pitfalls associated with the development of useful products and approaches to trichogenic NPs are also discussed.
Collapse
Affiliation(s)
- Mousa A. Alghuthaymi
- Biology Department, Science and Humanities College, Shaqra University, Alquwayiyah 11726, Saudi Arabia
| | - Kamel A. Abd-Elsalam
- Plant Pathology Research Institute, Agricultural Research Center (ARC), 9-Gamaa St., Giza 12619, Egypt;
| | - Hussien M. AboDalam
- Plant Pathology Department, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Farah K. Ahmed
- Biotechnology English Program, Faculty of Agriculture, Cairo University, Giza 12613, Egypt;
| | - Mythili Ravichandran
- Department of Microbiology, Vivekanandha Arts and Science College for Women, Sankari 637303, Tamil Nadu, India;
| | - Anu Kalia
- Electron Microscopy and Nanoscience Laboratory, Punjab Agricultural University, Ludhiana 141004, Punjab, India;
| | - Mahendra Rai
- Department of Microbiology, Nicolaus Copernicus University, Lwowska 1, 87100 Torun, Poland;
| |
Collapse
|
15
|
Bogas AC, Henrique Rodrigues S, Gonçalves MO, De Assis M, Longo E, Paiva De Sousa C. Endophytic Microorganisms From the Tropics as Biofactories for the Synthesis of Metal-Based Nanoparticles: Healthcare Applications. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.823236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Nanoparticles (NPs) have gained great attention in recent years due to their extensive and innovative applications in the field of medicine. However, conventional physicochemical approaches for the synthesis of NPs may be limited and costly, and the reaction by-products are potentially toxic for human health and the environment. Bio-mediated synthesis of NPs exploiting microorganisms as nanofactories has emerged as an alternative to traditional methods, as it provides economic and environmental benefits. Tropical ecosystems harbor a high diversity of endophytes, which have a diverse array of metabolic pathways that confer habitat adaptation and survival and that can be used to produce novel bioactive compounds with a variety of biological properties. Endophytic bacteria and fungi cultivated under optimum conditions have potential for use in biogenic synthesis of NPs with different characteristics and desired activities for medical applications, such as antimicrobial, antitumoral, antioxidant and anti-inflammatory properties. The bio-mediated synthesis of metal-based NPs can be favored because endophytic microorganisms may tolerate and/or adsorb metals and produce enzymes used as reducing agents. To our knowledge, this is the first review that brings together exclusively current research highlighting on the potential of endophytic bacteria and fungi isolated from native plants or adapted to tropical ecosystems and tropical macroalgae as nanofactories for the synthesis of NPs of silver, gold, copper, iron, zinc and other most studied metals, in addition to showing their potential use in human health.
Collapse
|
16
|
Zakariya NA, Majeed S, Jusof WHW. Investigation of antioxidant and antibacterial activity of iron oxide nanoparticles (IONPS) synthesized from the aqueous extract of Penicillium SPP. SENSORS INTERNATIONAL 2022. [DOI: 10.1016/j.sintl.2022.100164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
17
|
Nano-reduction of gold and silver ions: A perspective on the fate of microbial laccases as potential biocatalysts in the synthesis of metals (gold and silver) nano-particles. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100098. [PMID: 35024642 PMCID: PMC8732750 DOI: 10.1016/j.crmicr.2021.100098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/21/2021] [Accepted: 12/12/2021] [Indexed: 11/22/2022] Open
Abstract
Potential involvements of microbial laccases in the synthesis of silver and gold nanoparticles have been comprehensively assessed. Treasured roles of microbes and associated enzymes in synthesis of gold and silver nanoparticles have also been presented. As potential green biocatalysts for the synthesis of metal nanoparticles, microbial laccases may be promisingly used. Methodologies as well as involved possible mechanisms have been discussed in details in order to disclose the effectiveness of microbial laccases in the synthesis of gold and silver nanoparticles. Different characterization results of synthesized gold and silver nanoparticles based on UV–Vis spectra, XRD, SEM, TEM and other techniques have also been discussed. Mechanistic evaluation also shows a hope for the effectiveness of microbial laccases in the synthesis of other metal nanoparticles.
Nanoparticles of metals have momentous place in the field of biological as well as pharmaceutical chemistry due to which in the present scenario of the research, this field is of auspicious interest. Synthesis of metal nanoparticles via microbial assistance is a burning field for their green synthesis. In this direction, microbial enzymes play significant role, out of which microbial laccases may also be a talented biocatalyst for the synthesis of metal nanoparticles considering its efficacy and interesting promising biological applications. A very little works are known on the role of microbial laccases in the synthesis of metal nanoparticles but after effective scrutiny of their reported works on the synthesis of gold and silver nanoparticles, its fate as potential biocatalyst in the synthesis of metals nanoparticles is being automatically established. Thus, this perspective commendably appraises the active applicability of microbial laccases in the synthesis of gold and silver nanoparticles by reducing their ions in suitable reaction environment.
Collapse
|
18
|
Biosynthesis of Metal-Based Nanoparticles by Trichoderma and Its Potential Applications. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
19
|
Behera A, Pradhan SP, Ahmed FK, Abd-Elsalam KA. Enzymatic synthesis of silver nanoparticles: Mechanisms and applications. GREEN SYNTHESIS OF SILVER NANOMATERIALS 2022:699-756. [DOI: 10.1016/b978-0-12-824508-8.00030-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
20
|
Ramírez-Valdespino CA, Orrantia-Borunda E. Trichoderma and Nanotechnology in Sustainable Agriculture: A Review. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:764675. [PMID: 37744133 PMCID: PMC10512408 DOI: 10.3389/ffunb.2021.764675] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/28/2021] [Indexed: 09/26/2023]
Abstract
Due to their unique properties and functionalities, nanomaterials can be found in different activities as pharmaceutics, cosmetics, medicine, and agriculture, among others. Nowadays, formulations with nano compounds exist to reduce the application of conventional pesticides and fertilizers. Among the most used are nanoparticles (NPs) of copper, zinc, or silver, which are known because of their cytotoxicity, and their accumulation can change the dynamic of microbes present in the soil. In agriculture, Trichoderma is widely utilized as a safe biocontrol strategy and to promote plant yield, making it susceptible to be in contact with nanomaterials that can interfere with its viability as well as its biocontrol and plant growth promotion effects. It is well-known that strains of Trichoderma can tolerate and uptake heavy metals in their bulk form, but it is poorly understood whether the same occurs with nanomaterials. Interestingly, Trichoderma can synthesize NPs that exhibit antimicrobial activities against various organisms of interest, including plant pathogens. In this study, we summarize the main findings regarding Trichoderma and nanotechnology, including its use to synthesize NPs and the consequence that these compounds might have in this fungus and its associations. Moreover, based on these findings we discuss whether it is feasible to develop agrochemicals that combine NPs and Trichoderma strains to generate more sustainable products or not.
Collapse
Affiliation(s)
- Claudia A. Ramírez-Valdespino
- Laboratorio de Nanotoxicología, Departamento de Medio Ambiente y Energía, Centro de Investigación en Materiales Avanzados, Chihuahua, Mexico
| | | |
Collapse
|
21
|
Nene A, Galluzzi M, Hongrong L, Somani P, Ramakrishna S, Yu XF. Synthetic preparations and atomic scale engineering of silver nanoparticles for biomedical applications. NANOSCALE 2021; 13:13923-13942. [PMID: 34477675 DOI: 10.1039/d1nr01851e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to their peculiar oxidative effect, silver cations (Ag+) are well known for their antimicrobial properties and explored as therapeutic agents for biomedical applications. Size control with improved dispersion and stability are the key factors of Ag NPs (silver nanoparticles) to be used in biomedical applications. Silver based nano-materials are highly efficient due to their biological, chemical and physical properties in comparison with bulk silver. Atomic scale fabrication is achieved by rearranging the internal components of a material, in turn, influencing the mechanical, electrical, magnetic, thermal and chemical properties. For instance, size and shape have a strong impact on the optical, thermal and catalytic properties of Ag NPs. Such properties can be tuned by controlling the surface/volume ratio of Ag nanostructures with a small size (ideally <100 nm), in turn showing peculiar biological activity different from that of bulk silver. Silver nanomaterials such as nanoparticles, thin films and nanorods can be synthesized by various physical, chemical and biological methods whose most recent implementations will be described in this review. By controlling the structure-functionality relationship, silver based nano-materials have high potential for commercialization in biomedical applications. Antimicrobial, antifungal, antiviral, and anti-inflammatory Ag NPs can be applied in several fields such as pharmaceutics, sensors, coatings, cosmetics, wound healing, bio-labelling agents, antiviral drugs, and packaging.
Collapse
Affiliation(s)
- Ajinkya Nene
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, Guangdong, China.
| | | | | | | | | | | |
Collapse
|
22
|
Isolation and Characterization of Biosurfactant-Producing Bacteria from Amapaense Amazon Soils. Int J Microbiol 2021; 2021:9959550. [PMID: 34447438 PMCID: PMC8384547 DOI: 10.1155/2021/9959550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/18/2021] [Accepted: 08/05/2021] [Indexed: 12/05/2022] Open
Abstract
The objective of this research was to perform screening of biosurfactant-producing bacteria from Amapaense Amazon soils. Floodplain- and upland-forest soils of three municipalities of the Amapá state were isolated and identified. The isolates were cultured in nutrient broth with olive oil, and their extracts were evaluated according to drop collapse, oil dispersion, emulsification, and surface tension tests. From three hundred and eighteen isolates, the 43 bacteria were selected and identified by 16S rDNA gene sequencing, indicating the presence of three different genera, Serratia, Paenibacillus, and Citrobacter. The extracellular biosurfactant production pointed out the 15 most efficient bacteria that presented high emulsification capacity (E24 > 48%) and stability (less than 10% of drop after 72 h) and great potential to reduce the surface tension (varying from 49.40 to 34.50 mN·m−1). Cluster analysis classified genetically related isolates in different groups, which can be connected to differences in the amount or the sort of biosurfactants. Isolates from Serratia genus presented better emulsification capacity and produced a more significant surface tension drop, indicating a promising potential for biotechnological applications.
Collapse
|
23
|
Bamal D, Singh A, Chaudhary G, Kumar M, Singh M, Rani N, Mundlia P, Sehrawat AR. Silver Nanoparticles Biosynthesis, Characterization, Antimicrobial Activities, Applications, Cytotoxicity and Safety Issues: An Updated Review. NANOMATERIALS 2021; 11:nano11082086. [PMID: 34443916 PMCID: PMC8402060 DOI: 10.3390/nano11082086] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/06/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023]
Abstract
Rapid advances in nanotechnology have led to its emergence as a tool for the development of green synthesized noble metal nanoparticles, especially silver nanoparticles (AgNPs), for applications in diverse fields such as human health, the environment and industry. The importance of AgNPs is because of their unique physicochemical and antimicrobial properties, with a myriad of activities that are applicable in various fields, including the pharmaceutical industry. Countries with high biodiversity require the collection and transformation of information about biological assets into processes, associations, methods and tools that must be combined with the sustainable utilization of biological diversity. Therefore, this review paper discusses the applicable studies of the biosynthesis of AgNPs and their antimicrobial activities towards microorganisms in different areas viz. medicine and agriculture. The confirmed antiviral properties of AgNPs promote their applicability for SARS-CoV-2 treatment, based on assimilating the virus’ activities with those of similar viruses via in vivo studies. In this review, an insight into the cytotoxicity and safety issues of AgNPs, along with their future prospects, is also provided.
Collapse
Affiliation(s)
- Deepak Bamal
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Anoop Singh
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Gaurav Chaudhary
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Monu Kumar
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
| | - Manjeet Singh
- Department of Genetics and Plant Breeding, Oilseeds Section, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Neelam Rani
- Department of Botany and Plant Physiology, CCS Haryana Agricultural University, Hisar 125004, India;
| | - Poonam Mundlia
- Department of Biochemistry, Punjab University, Chandigarh 160014, India;
| | - Anita R. Sehrawat
- Department of Botany, Maharshi Dayanand University, Rohtak 124001, India; (D.B.); (A.S.); (G.C.); (M.K.)
- Correspondence:
| |
Collapse
|
24
|
Koul B, Poonia AK, Yadav D, Jin JO. Microbe-Mediated Biosynthesis of Nanoparticles: Applications and Future Prospects. Biomolecules 2021; 11:886. [PMID: 34203733 PMCID: PMC8246319 DOI: 10.3390/biom11060886] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/03/2021] [Accepted: 06/09/2021] [Indexed: 02/06/2023] Open
Abstract
Nanotechnology is the science of nano-sized particles/structures (~100 nm) having a high surface-to-volume ratio that can modulate the physical, chemical and biological properties of the chemical compositions. In last few decades, nanoscience has attracted the attention of the scientific community worldwide due to its potential uses in the pharmacy, medical diagnostics and disease treatment, energy, electronics, agriculture, chemical and space industries. The properties of nanoparticles (NPs) are size and shape dependent. These characteristic features of nanoparticles can be explored for various other applications such as computer transistors, chemical sensors, electrometers, memory schemes, reusable catalysts, biosensing, antimicrobial activity, nanocomposites, medical imaging, tumor detection and drug delivery. Therefore, synthesizing nanoparticles of desired size, structure, monodispersity and morphology is crucial for the aforementioned applications. Recent advancements in nanotechnology aim at the synthesis of nanoparticles/materials using reliable, innoxious and novel ecofriendly techniques. In contrast to the traditional methods, the biosynthesis of nanoparticles of a desired nature and structure using the microbial machinery is not only quicker and safer but more environmentally friendly. Various microbes, including bacteria, actinobacteria, fungi, yeast, microalgae and viruses, have recently been explored for the synthesis of metal, metal oxide and other important NPs through intracellular and extracellular processes. Some bacteria and microalgae possess specific potential to fabricate distinctive nanomaterials such as exopolysaccharides, nanocellulose, nanoplates and nanowires. Moreover, their ability to synthesize nanoparticles can be enhanced using genetic engineering approaches. Thus, the use of microorganisms for synthesis of nanoparticles is unique and has a promising future. The present review provides explicit information on different strategies for the synthesis of nanoparticles using microbial cells; their applications in bioremediation, agriculture, medicine and diagnostics; and their future prospects.
Collapse
Affiliation(s)
- Bhupendra Koul
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Anil Kumar Poonia
- Centre for Plant Biotechnology, CCSHAU, Hisar 125004, Haryana, India;
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
25
|
Rai M, Bonde S, Golinska P, Trzcińska-Wencel J, Gade A, Abd-Elsalam KA, Shende S, Gaikwad S, Ingle AP. Fusarium as a Novel Fungus for the Synthesis of Nanoparticles: Mechanism and Applications. J Fungi (Basel) 2021; 7:139. [PMID: 33672011 PMCID: PMC7919287 DOI: 10.3390/jof7020139] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/06/2021] [Accepted: 02/10/2021] [Indexed: 01/05/2023] Open
Abstract
Nanotechnology is a new and developing branch that has revolutionized the world by its applications in various fields including medicine and agriculture. In nanotechnology, nanoparticles play an important role in diagnostics, drug delivery, and therapy. The synthesis of nanoparticles by fungi is a novel, cost-effective and eco-friendly approach. Among fungi, Fusarium spp. play an important role in the synthesis of nanoparticles and can be considered as a nanofactory for the fabrication of nanoparticles. The synthesis of silver nanoparticles (AgNPs) from Fusarium, its mechanism and applications are discussed in this review. The synthesis of nanoparticles from Fusarium is the biogenic and green approach. Fusaria are found to be a versatile biological system with the ability to synthesize nanoparticles extracellularly. Different species of Fusaria have the potential to synthesise nanoparticles. Among these, F. oxysporum has demonstrated a high potential for the synthesis of AgNPs. It is hypothesised that NADH-dependent nitrate reductase enzyme secreted by F. oxysporum is responsible for the reduction of aqueous silver ions into AgNPs. The toxicity of nanoparticles depends upon the shape, size, surface charge, and the concentration used. The nanoparticles synthesised by different species of Fusaria can be used in medicine and agriculture.
Collapse
Affiliation(s)
- Mahendra Rai
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Shital Bonde
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Patrycja Golinska
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Joanna Trzcińska-Wencel
- Department of Microbiology, Nicolaus Copernicus University, Lwowska, 87-100 Torun, Poland; (P.G.); (J.T.-W.)
| | - Aniket Gade
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
| | - Kamel A. Abd-Elsalam
- Agricultural Research Center, Plant Pathology Research Institute, Giza 12619, Egypt;
| | - Sudhir Shende
- Department of Biotechnology, Nanobiotechnology Laboratory, Sant Gadge Baba Amravati University, Amravati 444602, India; (S.B.); (A.G.); (S.S.)
- Academy of Biology and Biotechnology, Southern Federal University, 344006 Rostov-on-Don, Russia
| | - Swapnil Gaikwad
- Microbial Diversity Research Centre, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth (Deemed to be University), Tathawade, Pune 411033, India;
| | - Avinash P. Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Krishi Vidyapeeth, Akola, Maharashtra 444104, India;
| |
Collapse
|
26
|
Jacinto MJ, Silva VC, Valladão DMS, Souto RS. Biosynthesis of magnetic iron oxide nanoparticles: a review. Biotechnol Lett 2020; 43:1-12. [PMID: 33156459 DOI: 10.1007/s10529-020-03047-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 11/02/2020] [Indexed: 11/25/2022]
Abstract
Nanoparticles promise to revolutionize the way we think of ordinary materials thanks to the new features such small structures exhibit which include strength, durability, optical and magnetics properties. Magnetic iron oxide nanoparticles (IONPs) are a prominent class of NMs because of their potential application in magnetic separation, hyperthermia, targeted drug delivery, and catalysis. Most synthetic nanoparticulate platforms rely on the use of tough chemical procedures associated with unfriendly, harmful and costly reactants. For this reason, bio-inspired approaches have become the most successful alternatives to fabricate nanomaterials in an "eco-friendly" manner, and many bio-protocols that make use of substrates from plants and microorganisms have been successfully applied in the synthesis of magnetic IONPs. In this review, the main biosynthesis protocols applied in the synthesis of iron oxide nanoparticles are discussed. A discussion on the challenges for a second stage perspective which would be a large scale production is also given.
Collapse
Affiliation(s)
- M J Jacinto
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil.
| | - V C Silva
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - D M S Valladão
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| | - R S Souto
- Universidade Federal de Mato Grosso, Departamento de Química, Avenida Fernando Correa da Costa S/N-Cidade Universitária, Cuiabá, Mato Grosso, 78060-900, Brazil
| |
Collapse
|
27
|
Mistry H, Thakor R, Patil C, Trivedi J, Bariya H. Biogenically proficient synthesis and characterization of silver nanoparticles employing marine procured fungi Aspergillus brunneoviolaceus along with their antibacterial and antioxidative potency. Biotechnol Lett 2020; 43:307-316. [PMID: 32944816 DOI: 10.1007/s10529-020-03008-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/14/2020] [Indexed: 01/26/2023]
Abstract
OBJECTIVES To assess the extracellular synthesis of silver nanoparticles using marine derived fungi Aspergillus brunneoviolaceus with their antibacterial and antioxidant activities. RESULTS The biosynthesis of silver nanoparticles was estimated by the change in color from light yellow to dark brown within 36 h as the reaction progressed. UV-Visible spectroscopy exhibited its stability at 411 nm; ATR-FTIR spectroscopy depicted the functional group responsible for its production; X-Ray Diffraction denoted its crystalline FCC structure resembling the peaks in XRD pattern, corresponding to [111], [200], [220], [311] and [222] planes; TEM imaging revealed its spherical morphology with the particle size ranging from 0.72 to 15.21 nm and Tauc's plot analysis that disclosed its band gap energy as 2.44 eV that manifested the potential of AgNPs to be semiconductors. The characterization data henceforth, confirmed the efficient production of silver nanoparticles. The biosynthesized AgNPs expressed strong antibacterial activity against two Gram-positive and three Gram-negative bacteria. They also proved to possess higher antioxidative potentials by showing their potent radical scavenging activity against DPPH (2, 2-diphenyl-1-picrylhydrazyl). CONCLUSIONS The study unfolds the prospect for further utilization of this mycogenically synthesized AgNPs as antibacterial, antioxidative and anticancer agents.
Collapse
Affiliation(s)
- Harsh Mistry
- Department of Life sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Rashmi Thakor
- Department of Life sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Chirag Patil
- Department of Life sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Jitendra Trivedi
- Department of Biotechnology, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India
| | - Himanshu Bariya
- Department of Life sciences, Hemchandracharya North Gujarat University, Patan, Gujarat, 384265, India.
| |
Collapse
|
28
|
S. R, M. SA, D. M, C. R, N. SK, S. H. Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. INORG NANO-MET CHEM 2020. [DOI: 10.1080/24701556.2020.1814332] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ranjani S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Shariq Ahmed M.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, Tamil Nadu, India
| | - MubarakAli D.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Ramachandran C.
- Food Microbiology laboratory, Kangwon National University, Chuncheon, Republic of Korea
| | - Senthil Kumar N.
- Department of Biotechnology, Mizoram University, Aizawl, Mizoram, India
| | - Hemalatha S.
- School of Life Sciences, B.S. Abdur Rahman Crescent institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|