1
|
Chen J, Cheng Z, Chen J, Qian L, Wang H, Liu Y. Advances in human norovirus research: Vaccines, genotype distribution and antiviral strategies. Virus Res 2024; 350:199486. [PMID: 39428038 PMCID: PMC11539660 DOI: 10.1016/j.virusres.2024.199486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Norovirus, belonging to the Caliciviridae family, is a non-enveloped, positive-sense single-stranded RNA virus. It is widely acknowledged as a significant etiological agent responsible for non-bacterial acute gastroenteritis and considered a major cause thereof. Norovirus is primarily tranmitted via fecal-oral route, but can also be transmitted via airborne routes. Clinical manifestations often include symptoms associated with acute gastroenteritis, like nausea, vomiting, watery diarrhea, stomach cramps, and others. Due to the specific pathogenic mechanism of the virus, and genomic diversity, there are currently no preventive vaccines or effective antiviral drugs available for treating norovirus-induced acute gastroenteritis infections. The management of such infections mainly relies on oral rehydration therapy while prevention necessitates adherence to personal hygiene measures. The present paper discusses the nature, transmission route, clinical manifestations, immune response mechanism, and vaccine research of Norovirus. The objective of this review manuscript is to systematically gather, analyze, and summarize recent research and investigations on norovirus in order to enhance our understanding of its characteristics and pathogenesis. This not only facilitates subsequent researchers in acquiring a more expedited and comprehensive grasp of the existing knowledge about norovirus but also provides clearer directions and goals for future studies.
Collapse
Affiliation(s)
- JunLi Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - ZhengChao Cheng
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Jing Chen
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China
| | - Lingling Qian
- Central laboratory of Changshu Medicine Examination Institute, Changshu, Jiangsu 215500, PR China.
| | - Haoran Wang
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| | - YuWei Liu
- Department of Laboratory Medicine, Department of Microbiology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212003,PR China.
| |
Collapse
|
2
|
Pidre ML, Arrías PN, Amorós Morales LC, Romanowski V. The Magic Staff: A Comprehensive Overview of Baculovirus-Based Technologies Applied to Human and Animal Health. Viruses 2022; 15:80. [PMID: 36680120 PMCID: PMC9863858 DOI: 10.3390/v15010080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/19/2022] [Accepted: 12/23/2022] [Indexed: 12/29/2022] Open
Abstract
Baculoviruses are enveloped, insect-specific viruses with large double-stranded DNA genomes. Among all the baculovirus species, Autographa californica multiple nucleopolyhedrovirus (AcMNPV) is the most studied. Due to its characteristics regarding biosafety, narrow host range and the availability of different platforms for modifying its genome, AcMNPV has become a powerful biotechnological tool. In this review, we will address the most widespread technological applications of baculoviruses. We will begin by summarizing their natural cycle both in larvae and in cell culture and how it can be exploited. Secondly, we will explore the different baculovirus-based protein expression systems (BEVS) and their multiple applications in the pharmaceutical and biotechnological industry. We will focus particularly on the production of vaccines, many of which are either currently commercialized or in advanced stages of development (e.g., Novavax, COVID-19 vaccine). In addition, recombinant baculoviruses can be used as efficient gene transduction and protein expression vectors in vertebrate cells (e.g., BacMam). Finally, we will extensively describe various gene therapy strategies based on baculoviruses applied to the treatment of different diseases. The main objective of this work is to provide an extensive up-to-date summary of the different biotechnological applications of baculoviruses, emphasizing the genetic modification strategies used in each field.
Collapse
Affiliation(s)
| | | | | | - Víctor Romanowski
- Instituto de Biotecnología y Biología Molecular (IBBM), Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), La Plata 1900, Argentina
| |
Collapse
|
3
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
4
|
Tariq H, Batool S, Asif S, Ali M, Abbasi BH. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front Microbiol 2022; 12:790121. [PMID: 35046918 PMCID: PMC8761975 DOI: 10.3389/fmicb.2021.790121] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/10/2021] [Indexed: 02/06/2023] Open
Abstract
Virus-like particles (VLPs) are nanostructures that possess diverse applications in therapeutics, immunization, and diagnostics. With the recent advancements in biomedical engineering technologies, commercially available VLP-based vaccines are being extensively used to combat infectious diseases, whereas many more are in different stages of development in clinical studies. Because of their desired characteristics in terms of efficacy, safety, and diversity, VLP-based approaches might become more recurrent in the years to come. However, some production and fabrication challenges must be addressed before VLP-based approaches can be widely used in therapeutics. This review offers insight into the recent VLP-based vaccines development, with an emphasis on their characteristics, expression systems, and potential applicability as ideal candidates to combat emerging virulent pathogens. Finally, the potential of VLP-based vaccine as viable and efficient immunizing agents to induce immunity against virulent infectious agents, including, SARS-CoV-2 and protein nanoparticle-based vaccines has been elaborated. Thus, VLP vaccines may serve as an effective alternative to conventional vaccine strategies in combating emerging infectious diseases.
Collapse
Affiliation(s)
- Hasnat Tariq
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sannia Batool
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Saaim Asif
- Department of Biosciences, COMSATS University, Islamabad, Pakistan
| | - Mohammad Ali
- Center for Biotechnology and Microbiology, University of Swat, Swat, Pakistan
| | | |
Collapse
|
5
|
Arghiani N, Shah K. Modulating microRNAs in cancer: Next-generation therapies. Cancer Biol Med 2021; 19:j.issn.2095-3941.2021.0294. [PMID: 34846108 PMCID: PMC8958885 DOI: 10.20892/j.issn.2095-3941.2021.0294] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 11/16/2022] Open
Abstract
MicroRNAs (miRNAs) are a class of endogenously expressed non-coding regulators of the genome with an ability to mediate a variety of biological and pathological processes. There is growing evidence demonstrating frequent dysregulation of microRNAs in cancer cells, which is associated with tumor initiation, development, migration, invasion, resisting cell death, and drug resistance. Studies have shown that modulation of these small RNAs is a novel and promising therapeutic tool in the treatment of a variety of diseases, especially cancer, due to their broad influence on multiple cellular processes. However, suboptimal delivery of the appropriate miRNA to the cancer sites, quick degradation by nucleases in the blood circulation, and off target effects have limited their research and clinical applications. Therefore, there is a pressing need to improve the therapeutic efficacy of miRNA modulators, while at the same time reducing their toxicities. Several delivery vehicles for miRNA modulators have been shown to be effective in vitro and in vivo. In this review, we will discuss the role and importance of miRNAs in cancer and provide perspectives on currently available carriers for miRNA modulation. We will also summarize the challenges and prospects for the clinical translation of miRNA-based therapeutic strategies.
Collapse
Affiliation(s)
- Nahid Arghiani
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Khalid Shah
- Center for Stem Cell and Translational Immunotherapy (CSTI), Harvard Medical School, Boston, MA 02115, USA
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|