1
|
Ma S, Hubal M, Morris M, Ross L, Huffman K, Vann C, Moore N, Hauser E, Bareja A, Jiang R, Kummerfeld E, Barberio M, Houmard J, Bennett W, Johnson J, Timmons J, Broderick G, Kraus V, Aliferis C, Kraus W. Sex-specific skeletal muscle gene expression responses to exercise reveal novel direct mediators of insulin sensitivity change. NAR MOLECULAR MEDICINE 2025; 2:ugaf010. [PMID: 40225320 PMCID: PMC11992681 DOI: 10.1093/narmme/ugaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/15/2025]
Abstract
Understanding how exercise improves whole-body insulin sensitivity (Si) involves complex molecular signaling. This study examines skeletal muscle gene expression changes related to Si, considering sex differences, exercise amount, and intensity to identify pharmacologic targets mimicking exercise benefits. Fifty-three participants from STRRIDE (Studies of Targeted Risk Reduction Interventions through Defined Exercise) I and II completed eight months of aerobic training. Gene expression was assessed via Affymetrix and Illumina technologies, and Si was measured using intravenous glucose tolerance tests. A novel discovery protocol integrating literature-derived and data-driven modeling identified causal pathways and direct transcriptional targets. In women, exercise amount primarily influenced transcription factor targets, which were generally inhibitory, while in men, exercise intensity drove activating targets. Common transcription factors included ATF1, CEBPA, BACH2, and STAT1. Si-related transcriptional targets included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key pathways mediating Si improvements were identified: estrogen signaling and protein kinase C (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. The molecular pathways underlying Si improvements varied by sex and exercise parameters, highlighting potential skeletal muscle-specific drug targets such as EGFR to replicate the metabolic benefits of exercise.
Collapse
Affiliation(s)
- Sisi Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Monica J Hubal
- Department of Kinesiology, Indiana University Indianapolis, Indianapolis, IN 46202, United States
| | - Matthew C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, United States
| | - Leanna M Ross
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Kim M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Christopher G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Nadia Moore
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Elizabeth R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Akshay Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Rong Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701, United States
| | - Eric Kummerfeld
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Matthew D Barberio
- Department of Exercise and Nutrition Sciences, George Washington University, Washington DC 20052, United States
| | - Joseph A Houmard
- Department of Kinesiology, ECU, Greenville, NC 27858, United States
| | - William C Bennett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Johanna L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - James A Timmons
- School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ, United Kingdom
| | - Gordon Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621, United States
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| | - Constantin F Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - William E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701, United States
| |
Collapse
|
2
|
Ma S, Morris MC, Hubal MJ, Ross LM, Huffman KM, Vann CG, Moore N, Hauser ER, Bareja A, Jiang R, Kummerfeld E, Barberio MD, Houmard JA, Bennett WB, Johnson JL, Timmons JA, Broderick G, Kraus VB, Aliferis CF, Kraus WE. Sex-Specific Skeletal Muscle Gene Expression Responses to Exercise Reveal Novel Direct Mediators of Insulin Sensitivity Change. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.07.24313236. [PMID: 39281755 PMCID: PMC11398589 DOI: 10.1101/2024.09.07.24313236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
BACKGROUND Understanding the causal pathways, systems, and mechanisms through which exercise impacts human health is complex. This study explores molecular signaling related to whole-body insulin sensitivity (Si) by examining changes in skeletal muscle gene expression. The analysis considers differences by biological sex, exercise amount, and exercise intensity to identify potential molecular targets for developing pharmacologic agents that replicate the health benefits of exercise. METHODS The study involved 53 participants from the STRRIDE I and II trials who completed eight months of aerobic training. Skeletal muscle gene expression was measured using Affymetrix and Illumina technologies, while pre- and post-training Si was assessed via an intravenous glucose tolerance test. A novel gene discovery protocol, integrating three literature-derived and data-driven modeling strategies, was employed to identify causal pathways and direct causal factors based on differentially expressed transcripts associated with exercise intensity and amount. RESULTS In women, the transcription factor targets identified were primarily influenced by exercise amount and were generally inhibitory. In contrast, in men, these targets were driven by exercise intensity and were generally activating. Transcription factors such as ATF1, CEBPA, BACH2, and STAT1 were commonly activating in both sexes. Specific transcriptional targets related to exercise-induced Si improvements included TACR3 and TMC7 for intensity-driven effects, and GRIN3B and EIF3B for amount-driven effects. Two key signaling pathways mediating aerobic exercise-induced Si improvements were identified: one centered on estrogen signaling and the other on phorbol ester (PKC) signaling, both converging on the epidermal growth factor receptor (EGFR) and other relevant targets. CONCLUSIONS The signaling pathways mediating Si improvements from aerobic exercise differed by sex and were further distinguished by exercise intensity and amount. Transcriptional adaptations in skeletal muscle related to Si improvements appear to be causally linked to estrogen and PKC signaling, with EGFR and other identified targets emerging as potential skeletal muscle-specific drug targets to mimic the beneficial effects of exercise on Si.
Collapse
Affiliation(s)
- S Ma
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M C Morris
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - M J Hubal
- Department of Kinesiology, Indiana University - Indianapolis, Indianapolis IN 46202
| | - L M Ross
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - K M Huffman
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C G Vann
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - N Moore
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - E R Hauser
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - A Bareja
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - R Jiang
- Department of Head and Neck Surgery & Communication Sciences, Duke University School of Medicine, Durham, NC 27701
| | - E Kummerfeld
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - M D Barberio
- Department of Exercise and Nutrition Sciences, George Washington University, Washington DC 20052
| | - J A Houmard
- Department of Kinesiology, ECU, Greenville, NC 27858
| | - W B Bennett
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J L Johnson
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - J A Timmons
- School of Medicine and Dentistry, Queen Mary University of London, UK
| | - G Broderick
- Center for Clinical Systems Biology, Rochester General Hospital, Rochester, NY 14621
| | - V B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| | - C F Aliferis
- Institute for Health Informatics (IHI), Academic Health Center, University of Minnesota, Minneapolis, MN 55455
| | - W E Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27701
| |
Collapse
|
3
|
Zhang Y, Yao Y, Wei J, Zhang Z. miR-338-5p regulated the NF-κB/MAPK pathway to alleviate inflammation and oxidative stress by targeting IL-6 in rats with atrial fibrillation. 3 Biotech 2024; 14:182. [PMID: 38947734 PMCID: PMC11213847 DOI: 10.1007/s13205-024-04024-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 06/11/2024] [Indexed: 07/02/2024] Open
Abstract
The aim of this study was to investigate the functional effect of miR-338-5p targeting IL-6 on NF-κB/MAPK pathway-mediated inflammation and oxidative stress in atrial fibrillation (AF) rats. AF model rats were generated by tail vein injection of 0.1 mL Ach-CaCl2 mixture. The overexpression and suppression of miR-338-5p were established by injecting a miR-338-5p-agomir and a miR-338-5p-antagomir, respectively, into AF rats. Cardiac morphological changes were detected by H&E and Masson staining. The levels of ROS, SOD, T-AOC, IL-6, IL-1β, and TNF-α were detected via ELISA. Dual luciferase assays, qRT‒PCR, and western blotting were used to verify that miR-338-5p targets IL-6. The expression of NF-κB/MAPK pathway proteins was detected by western blot. Overexpression of miR-338-5p ameliorated heart damage in AF rats. Increased miR-338-5p reduced the levels of CK, CK-MB, and cTnT to alleviate myocardial injury. Furthermore, overexpression of miR-338-5p relieved inflammation and oxidative stress by downregulating SOD and T-AOC and upregulating IL-6, IL-1β, TNF-α, and ROS. Further research revealed that upregulation of miR-338-5p reduced the protein levels of p-p38, p-p65 and p-ERK1/2. The opposite results were obtained following miR-338-5p-antagomir treatment. Taken together, these findings indicate that the upregulation of miR-338-5p alleviated inflammation and oxidative stress by targeting IL-6 to inhibit the NF-κB/MAPK pathway, thus providing a new therapeutic target for AF.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Cardiology, Gansu Provincial Central Hospital, Lanzhou, 730070 Gansu China
| | - Yali Yao
- Department of Cardiovascular Center, First Hospital of Lanzhou University, Lanzhou, 730013 Gansu China
| | - Jia Wei
- The First Clinical Medical College of Lanzhou University, Lanzhou, 730099 Gansu China
| | - Zhen Zhang
- Department of Cardiology, The Second People’s Hospital of Lanzhou City, No. 388 Jingyuan Road, Lanzhou, 730046 Gansu People’s Republic of China
| |
Collapse
|
4
|
Tsymbal S, Refeld A, Zatsepin V, Kuchur O. The p53 protein is a suppressor of Atox1 copper chaperon in tumor cells under genotoxic effects. PLoS One 2023; 18:e0295944. [PMID: 38127999 PMCID: PMC10735018 DOI: 10.1371/journal.pone.0295944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023] Open
Abstract
The p53 protein is crucial for regulating cell survival and apoptosis in response to DNA damage. However, its influence on therapy effectiveness is controversial: when DNA damage is high p53 directs cells toward apoptosis, while under moderate genotoxic stress it saves the cells from death and promote DNA repair. Furthermore, these processes are influenced by the metabolism of transition metals, particularly copper since they serve as cofactors for critical enzymes. The metallochaperone Atox1 is under intensive study in this context because it serves as transcription factor allegedly mediating described effects of copper. Investigating the interaction between p53 and Atox1 could provide insights into tumor cell survival and potential therapeutic applications in oncology. This study explores the relationship between p53 and Atox1 in HCT116 and A549 cell lines with wild type and knockout TP53. The study found an inverse correlation between Atox1 and p53 at the transcriptional and translational levels in response to genotoxic stress. Atox1 expression decreased with increased p53 activity, while cells with inactive p53 had significantly higher levels of Atox1. Suppression of both genes increased apoptosis, while suppression of the ATOX1 gene prevented apoptosis even under the treatment with chemotherapeutic drugs. The findings suggest that Atox1 may act as one of key elements in promotion of cell cycle under DNA-damaging conditions, while p53 works as an antagonist by inhibiting Atox1. Understanding of this relationship could help identify potential targets in cell signaling pathways to enhance the effectiveness of combined antitumor therapy, especially in tumors with mutant or inactive p53.
Collapse
Affiliation(s)
- Sergey Tsymbal
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | - Aleksandr Refeld
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| | | | - Oleg Kuchur
- International Institute ‘Solution Chemistry of Advanced Materials and Technologies’, ITMO University, St. Petersburg, Russia
| |
Collapse
|
5
|
Krause HB, Karls AL, McClean MN, Kreeger PK. Cellular context alters EGF-induced ERK dynamics and reveals potential crosstalk with GDF-15. BIOMICROFLUIDICS 2022; 16:054104. [PMID: 36217350 PMCID: PMC9547670 DOI: 10.1063/5.0114334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Cellular signaling dynamics are sensitive to differences in ligand identity, levels, and temporal patterns. These signaling patterns are also impacted by the larger context that the cell experiences (i.e., stimuli such as media formulation or substrate stiffness that are constant in an experiment exploring a particular variable but may differ between independent experiments which explore that variable) although the reason for different dynamics is not always obvious. Here, we compared extracellular-regulated kinase (ERK) signaling in response to epidermal growth factor treatment of human mammary epithelial cells cultures in either well culture or a microfluidic device. Using a single-cell ERK kinase translocation reporter, we observed extended ERK activation in well culture and only transient activity in microfluidic culture. The activity in microfluidic culture resembled that of the control condition, suggesting that shear stress led to the early activity and a loss of autocrine factors dampened extended signaling. Through experimental analysis we identified growth differentiation factor-15 as a candidate factor that led to extended ERK activation through a protein kinase C-α/β dependent pathway. Our results demonstrate that context impacts ERK dynamics and that comparison of distinct contexts can be used to elucidate new aspects of the cell signaling network.
Collapse
Affiliation(s)
- Harris B. Krause
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Alexis L. Karls
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | | - Pamela K. Kreeger
- Author to whom correspondence should be addressed:. Telephone: 608-890-2915
| |
Collapse
|
6
|
Lioncino M, Fusco A, Monda E, Colonna D, Sibilio M, Caiazza M, Magri D, Borrelli AC, D’Onofrio B, Mazzella ML, Colantuono R, Arienzo MR, Sarubbi B, Russo MG, Chello G, Limongelli G. Severe Lymphatic Disorder and Multifocal Atrial Tachycardia Treated with Trametinib in a Patient with Noonan Syndrome and SOS1 Mutation. Genes (Basel) 2022; 13:genes13091503. [PMID: 36140671 PMCID: PMC9498305 DOI: 10.3390/genes13091503] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 01/15/2023] Open
Abstract
Noonan syndrome (NS) is a multisystemic disorder caused by germline mutations in the Ras/MAPK cascade, causing a broad spectrum of phenotypical abnormalities, including abnormal facies, developmental delay, bleeding diathesis, congenital heart disease (mainly pulmonary stenosis and hypertrophic cardiomyopathy), lymphatic disorders, and uro-genital abnormalities. Multifocal atrial tachycardia has been associated with NS, where it may occur independently of hypertrophic cardiomyopathy. Trametinib, a highly selective MEK1/2 inhibitor currently approved for the treatment of cancer, has been shown to reverse left ventricular hypertrophy in two RIT1-mutated newborns with NS and severe hypertrophic cardiomyopathy. Severe lymphatic abnormalities may contribute to decreased pulmonary compliance in NS, and pulmonary lymphangiectasias should be included in the differential diagnosis of a newborn requiring prolonged oxygen administration. Herein we report the case of a pre-term newborn who was admitted to our unit for the occurrence of severe respiratory distress and subentrant MAT treated with trametinib.
Collapse
Affiliation(s)
- Michele Lioncino
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Adelaide Fusco
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Diego Colonna
- Adult Congenital Heart Disease Unit, Monaldi Hospital, 81031 Naples, Italy
| | - Michelina Sibilio
- Department of Pediatrics, Santobono-Pausilipon Children’s Hospital, 81031 Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Daniela Magri
- Department of Neonatal Intensive Care, Monaldi Hospital, 81031 Naples, Italy
| | | | - Barbara D’Onofrio
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Maria Luisa Mazzella
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | - Rossella Colantuono
- Department of Neonatal Intensive Care, Monaldi Hospital, 81031 Naples, Italy
| | | | - Berardo Sarubbi
- Adult Congenital Heart Disease Unit, Monaldi Hospital, 81031 Naples, Italy
| | - Maria Giovanna Russo
- Paediatric Cardiology Unit, “L.Vanvitelli” University—Monaldi Hospital, 81031 Naples, Italy
| | - Giovanni Chello
- Department of Neonatal Intensive Care, Monaldi Hospital, 81031 Naples, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
- Institute of Cardiovascular Sciences, University College of London and St. Bartholomew’s Hospital, London WC1E 6DD, UK
- Correspondence:
| |
Collapse
|
7
|
Jubaidi FF, Zainalabidin S, Taib IS, Abdul Hamid Z, Mohamad Anuar NN, Jalil J, Mohd Nor NA, Budin SB. The Role of PKC-MAPK Signalling Pathways in the Development of Hyperglycemia-Induced Cardiovascular Complications. Int J Mol Sci 2022; 23:ijms23158582. [PMID: 35955714 PMCID: PMC9369123 DOI: 10.3390/ijms23158582] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/24/2022] [Accepted: 07/30/2022] [Indexed: 02/05/2023] Open
Abstract
Cardiovascular disease is the most common cause of death among diabetic patients worldwide. Hence, cardiovascular wellbeing in diabetic patients requires utmost importance in disease management. Recent studies have demonstrated that protein kinase C activation plays a vital role in the development of cardiovascular complications via its activation of mitogen-activated protein kinase (MAPK) cascades, also known as PKC-MAPK pathways. In fact, persistent hyperglycaemia in diabetic conditions contribute to preserved PKC activation mediated by excessive production of diacylglycerol (DAG) and oxidative stress. PKC-MAPK pathways are involved in several cellular responses, including enhancing oxidative stress and activating signalling pathways that lead to uncontrolled cardiac and vascular remodelling and their subsequent dysfunction. In this review, we discuss the recent discovery on the role of PKC-MAPK pathways, the mechanisms involved in the development and progression of diabetic cardiovascular complications, and their potential as therapeutic targets for cardiovascular management in diabetic patients.
Collapse
Affiliation(s)
- Fatin Farhana Jubaidi
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| | - Satirah Zainalabidin
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Izatus Shima Taib
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Zariyantey Abdul Hamid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
| | - Nur Najmi Mohamad Anuar
- Center for Toxicology and Health Risk Research, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (S.Z.); (N.N.M.A.)
| | - Juriyati Jalil
- Center for Drug and Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia;
| | - Nor Anizah Mohd Nor
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Faculty of Health Sciences, University College MAIWP International, Kuala Lumpur 68100, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur 50300, Malaysia; (I.S.T.); (Z.A.H.); (N.A.M.N.)
- Correspondence: (F.F.J.); (S.B.B.); Tel.: +603-9289-7645 (S.S.B.)
| |
Collapse
|
8
|
Interplay between Zn2+ Homeostasis and Mitochondrial Functions in Cardiovascular Diseases and Heart Ageing. Int J Mol Sci 2022; 23:ijms23136890. [PMID: 35805904 PMCID: PMC9266371 DOI: 10.3390/ijms23136890] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/17/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
Zinc plays an important role in cardiomyocytes, where it exists in bound and histochemically reactive labile Zn2+ forms. Although Zn2+ concentration is under tight control through several Zn2+-transporters, its concentration and intracellular distribution may vary during normal cardiac function and pathological conditions, when the protein levels and efficacy of Zn2+ transporters can lead to zinc re-distribution among organelles in cardiomyocytes. Such dysregulation of cellular Zn2+ homeostasis leads to mitochondrial and ER stresses, and interrupts normal ER/mitochondria cross-talk and mitophagy, which subsequently, result in increased ROS production and dysregulated metabolic function. Besides cardiac structural and functional defects, insufficient Zn2+ supply was associated with heart development abnormalities, induction and progression of cardiovascular diseases, resulting in accelerated cardiac ageing. In the present review, we summarize the recently identified connections between cellular and mitochondrial Zn2+ homeostasis, ER stress and mitophagy in heart development, excitation–contraction coupling, heart failure and ischemia/reperfusion injury. Additionally, we discuss the role of Zn2+ in accelerated heart ageing and ageing-associated rise of mitochondrial ROS and cardiomyocyte dysfunction.
Collapse
|
9
|
Lu L, Cao L, Liu Y, Chen Y, Fan J, Yin Y. Angiotensin (ang) 1-7 inhibits ang II-induced atrial fibrosis through regulating the interaction of proto-oncogene tyrosine-protein kinase Src (c-Src) and Src homology region 2 domain-containing phosphatase-1 (SHP-1)). Bioengineered 2021; 12:10823-10836. [PMID: 34872449 PMCID: PMC8809921 DOI: 10.1080/21655979.2021.1967035] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To verify whether Ang-(1-7) produces an antagonistic effect on Ang II-mediated atrial remodeling. Ang II–induced HL-1 cell model and a rat model of Ang II–induced atrial remodeling were constructed and intervened with Ang II Ang-(1-7), AngII +Ang-(1-7), Ang II+ c-Src specific inhibitor (SU6656), and Ang II + Ang-(1-7) + SSG (SHP-1/2 specific inhibitor, stibogluconate), respectively. The systolic blood pressure of the rat caudal artery was detected. And trial fibrosis was detected by Picrosirius red staining and Masson’s trichrome staining. Expressions of transforming growth factor-β (TGF-β), tissue inhibitor of metalloproteinases 1 (TIMP1), Matrix metalloproteinase 2 (MMP-2), connective tissue growth factor (CTGF), galectin-3, α-smooth muscle actin (α-SMA), and collagen I/III were subjected to qPCR and western blot. Furthermore, SHP-1 binding to c-Src was verified by co-immunoprecipitation (Co-IP). Results showed that the expressions of TGF-β, TIMP1, MMP-2, CTGF, α-SMA, galectin-3, and collagen I were increased markedly in the Ang II intervention group, and the expressions of p-ERK1/2, p-Akt, and p-p38MAPK were also increased dramatically. Ang-(1-7) or SU6656 addition could inhibit the action of Ang II factor, thereby minimizing the expressions of the previously described genes and proteins. Simultaneously, SSG supplement reversed the antagonistic effect of Ang-(1-7) on Ang II, and the latter elevated the blood pressure and induced atrial fibrosis in rats. Ang-(1-7) could reverse the changes related to Ang II–induced atrial fibrosis in rats. In conclusion, Ang-(1-7) antagonized Ang II–induced atrial remodeling by regulating SHP-1 and c-Src, thereby affecting the MAPKs/Akt signaling pathway.
Collapse
Affiliation(s)
- Li Lu
- Department of Critical Care Medicine, University-Town Hospital of Chongqing Medical University, Chongqing, China
| | - Li Cao
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yihao Liu
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunlin Chen
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinqi Fan
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuehui Yin
- Department of Cardiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Meisner JK, Bradley DJ, Russell MW. Molecular Management of Multifocal Atrial Tachycardia in Noonan's Syndrome With MEK1/2 Inhibitor Trametinib. CIRCULATION. GENOMIC AND PRECISION MEDICINE 2021; 14:e003327. [PMID: 34463117 DOI: 10.1161/circgen.121.003327] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Joshua K Meisner
- Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - David J Bradley
- Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| | - Mark W Russell
- Division of Pediatric Cardiology, University of Michigan, Ann Arbor
| |
Collapse
|
11
|
Inhibition of Ca 2+-dependent protein kinase C rescues high calcium-induced pro-arrhythmogenic cardiac alternans in rabbit hearts. Pflugers Arch 2021; 473:1315-1327. [PMID: 34145500 DOI: 10.1007/s00424-021-02574-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/22/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Cardiac alternans closely linked to calcium dysregulation is a crucial risk factor for fatal arrhythmia causing especially sudden death. Calcium overload is well-known to activate Ca2+-dependent protein kinase C (PKC); however, the effects of PKC on arrhythmogenic cardiac alternans have not yet been investigated. This study aimed to determine the contributions of PKC activities in cardiac alternans associated with calcium cycling disturbances. In the present study, action potential duration alternans (APD-ALT) induced by high free intracellular calcium ([Ca2+]i) exerted not only in a calcium concentration-dependent manner but also in a frequency-dependent manner. High [Ca2+]i-induced APD-ALT was suppressed by not only BAPTA-AM but also nifedipine. On the other hand, PKC inhibitors BIM and Gö 6976 eliminated high [Ca2+]i-induced APD-ALT, and PKC activator PMA was found to induce APD-ALT at normal [Ca2+]i condition. Furthermore, BIM effectively prevented calcium transient alternans (CaT-ALT) and even CaT disorders caused by calcium overload. Moreover, BIM not only eliminated electrocardiographic T-wave alternans (TWA) caused by calcium dysregulation, but also lowered the incidence of ventricular arrhythmias in isolated hearts. What's more, BIM prevented the expression of PKC α upregulated by calcium overload in high calcium-perfused hearts. We firstly found that pharmacologically inhibiting Ca2+-dependent PKC over-activation suppressed high [Ca2+]i-induced cardiac alternans. This recognition indicates that inhibition of PKC activities may become a therapeutic target for the prevention of pro-arrhythmogenic cardiac alternans associated with calcium dysregulation.
Collapse
|