1
|
An NADPH-auxotrophic Corynebacterium glutamicum recombinant strain and used it to construct L-leucine high-yielding strain. INTERNATIONAL MICROBIOLOGY : THE OFFICIAL JOURNAL OF THE SPANISH SOCIETY FOR MICROBIOLOGY 2023; 26:11-24. [PMID: 35925494 DOI: 10.1007/s10123-022-00270-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/07/2022] [Accepted: 07/21/2022] [Indexed: 01/06/2023]
Abstract
The NADPH-regeneration enzymes in Corynebacterium glutamicum were inactivated to construct an NADPH-auxotrophic C. glutamicum strain by gene knockout and gene replacement. The resultant NADPH-auxotrophic C. glutamicum XL-1 ΔZMICg::ISm (i.e., strain Leu-1) grew well in the basic medium only with gluconate as carbon source. Replacement of the native glyceraldehyde 3-phosphate dehydrogenase (NAD-GapDHCg) by NADP-GapDHCa from Clostridium acetobutylicum is an effective strategy for producing L-leucine in NADPH-prototrophic strain XL-1 and NADPH-auxotrophic strain Leu-1, whereas the L-leucine yield did not differ significantly between these strains (14.1 ± 1.8 g/L vs 16.2 ± 1.1 g/L). Enhancing the carbon flux in biosynthetic pathway by recombinant expression plasmid pEC-ABNCE promoted L-leucine production, but the shortage NADPH supply limited the L-leucine yield. The mutated promoters of zwf and icdCg were introduced into C. glutamicum with NADP-GapDHCa and pEC-ABNCE increased L-leucine yield (54.3 ± 2.9 g/L) and improved cell growth (OD562 = 83.4 ± 7.5) in fed-batch fermentation because the resultant strain C. glutamicum XL-1 ΔMICg::ISm GCg::GCa Pzwf-D1 Picd-D2/pEC-ABNCE (i.e., strain Leu-9) exhibited the proper intracellular NADPH and NADH level. This is the first report of constructing an L-leucine high-yielding strain that reasonably supplies NADPH by optimizing the biosynthetic pathway of NADPH from an NADPH-auxotrophic strain.
Collapse
|
2
|
Lee SM, Jeong KJ. Advances in Synthetic Biology Tools and Engineering of Corynebacterium glutamicum as a Platform Host for Recombinant Protein Production. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-022-0219-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
3
|
Genome engineering of the Corynebacterium glutamicum chromosome by the Extended Dual-In/Out strategy. METHODS IN MICROBIOLOGY 2022; 200:106555. [DOI: 10.1016/j.mimet.2022.106555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 08/03/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
|
4
|
Dynamic control of 4-hydroxyisoleucine biosynthesis by multi-biosensor in Corynebacterium glutamicum. Appl Microbiol Biotechnol 2022; 106:5105-5121. [DOI: 10.1007/s00253-022-12034-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/02/2022]
|
5
|
Wang Y, Xu J, Jin Z, Xia X, Zhang W. Improvement of acetyl-CoA supply and glucose utilization increases l-leucine production in Corynebacterium glutamicum. Biotechnol J 2021; 17:e2100349. [PMID: 34870372 DOI: 10.1002/biot.202100349] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 11/11/2022]
Abstract
BACKGROUND l-Leucine is one of important essential amino acids with multiple industrial applications, whose market requirements cannot be met because of the lower productivity. MAIN METHODS AND MAJOR RESULTS In this study, a strain of Corynebacterium glutamicum with high l-leucine yield was constructed to enhance its acetyl-CoA supply and glucose utilization. One copy of leuA under the control of a strong promoter was incorporated into the C. glutamicum genome. Then, acetyl-CoA supply was increased by the integration of a terminator in front of gltA and by the heterogeneous overexpression of acetyl-CoA synthetase (Acs) and deacetylase (CobB) derived from Escherichia coli. Next, the transcriptional regulator SugR was deleted to enhance glucose uptake via a phosphotransferase-mediated route. In fed-batch fermentation performed in a 5-L reactor, l-leucine production of 40.11±0.73 g/L was achieved under the optimized conditions, with the l-leucine yield and productivity of 0.25 g/g glucose and 0.59 g/L/h, respectively. CONCLUSIONS AND IMPLICATIONS These results represent a significant improvement in the l-leucine titer of C. glutamicum, indicating that the process possesses highly potential for industrial application. These strategies can be also expanded to enable the production of other value-added biochemicals derived from the intermediates of central carbon metabolism. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yingyu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Jianzhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Zhengyu Jin
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, WuXi, 214122, China
| | - Xiaole Xia
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| | - Weiguo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, WuXi, 214122, China
| |
Collapse
|
6
|
Recent progress in metabolic engineering of Corynebacterium glutamicum for the production of C4, C5, and C6 chemicals. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0788-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
7
|
Wang Q, Zhang J, Al Makishah NH, Sun X, Wen Z, Jiang Y, Yang S. Advances and Perspectives for Genome Editing Tools of Corynebacterium glutamicum. Front Microbiol 2021; 12:654058. [PMID: 33897668 PMCID: PMC8058222 DOI: 10.3389/fmicb.2021.654058] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/17/2022] Open
Abstract
Corynebacterium glutamicum has been considered a promising synthetic biological platform for biomanufacturing and bioremediation. However, there are still some challenges in genetic manipulation of C. glutamicum. Recently, more and more genetic parts or elements (replicons, promoters, reporter genes, and selectable markers) have been mined, characterized, and applied. In addition, continuous improvement of classic molecular genetic manipulation techniques, such as allelic exchange via single/double-crossover, nuclease-mediated site-specific recombination, RecT-mediated single-chain recombination, actinophages integrase-mediated integration, and transposition mutation, has accelerated the molecular study of C. glutamicum. More importantly, emerging gene editing tools based on the CRISPR/Cas system is revolutionarily rewriting the pattern of genetic manipulation technology development for C. glutamicum, which made gene reprogramming, such as insertion, deletion, replacement, and point mutation, much more efficient and simpler. This review summarized the recent progress in molecular genetic manipulation technology development of C. glutamicum and discussed the bottlenecks and perspectives for future research of C. glutamicum as a distinctive microbial chassis.
Collapse
Affiliation(s)
- Qingzhuo Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Jiao Zhang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Naief H. Al Makishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xiaoman Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Zhiqiang Wen
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
- School of Environmental and Biological Engineering, Nanjing University of Science & Technology, Nanjing, China
| | - Yu Jiang
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Huzhou Center of Industrial Biotechnology, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|