1
|
Optimization of the fermentation parameters to maximize the production of cellulases and xylanases using DDGS as the main feedstock in stirred tank bioreactors. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
2
|
Brück SA, Contato AG, Gamboa-Trujillo P, de Oliveira TB, Cereia M, de Moraes Polizeli MDLT. Prospection of Psychrotrophic Filamentous Fungi Isolated from the High Andean Paramo Region of Northern Ecuador: Enzymatic Activity and Molecular Identification. Microorganisms 2022; 10:microorganisms10020282. [PMID: 35208737 PMCID: PMC8880075 DOI: 10.3390/microorganisms10020282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
The isolation of filamentous fungal strains from remote habitats with extreme climatic conditions has led to the discovery of a series of enzymes with attractive properties that can be useful in various industrial applications. Among these, cold-adapted enzymes from fungi with psychrotrophic lifestyles are valuable agents in industrial processes aiming towards energy reduction. Out of eight strains isolated from soil of the paramo highlands of Ecuador, three were selected for further experimentation and identified as Cladosporium michoacanense, Cladosporium sp. (cladosporioides complex), and Didymella sp., this last being reported for the first time in this area. The secretion of seven enzymes, namely, endoglucanase, exoglucanase, β-D-glucosidase, endo-1,4-β-xylanase, β-D-xylosidase, acid, and alkaline phosphatases, were analyzed under agitation and static conditions optimized for the growth period and incubation temperature. Cladosporium strains under agitation as well as incubation for 72 h mostly showed the substantial activation for endoglucanase reaching up to 4563 mU/mL and xylanase up to 3036 mU/mL. Meanwhile, other enzymatic levels varied enormously depending on growth and temperature. Didymella sp. showed the most robust activation at 8 °C for endoglucanase, β-D-glucosidase, and xylanase, indicating an interesting profile for applications such as bioremediation and wastewater treatment processes under cold climatic conditions.
Collapse
Affiliation(s)
- Stefan Alexander Brück
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito 170403, Ecuador; (S.A.B.); (P.G.-T.)
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Alex Graça Contato
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
| | - Paul Gamboa-Trujillo
- Facultad de Ciencias Biológicas, Universidad Central del Ecuador, Quito 170403, Ecuador; (S.A.B.); (P.G.-T.)
- Facultad de Ingeniería Química, Universidad Central del Ecuador, Quito 170521, Ecuador
| | - Tássio Brito de Oliveira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (T.B.d.O.); (M.C.)
| | - Mariana Cereia
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (T.B.d.O.); (M.C.)
| | - Maria de Lourdes Teixeira de Moraes Polizeli
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil;
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14050-901, Brazil; (T.B.d.O.); (M.C.)
- Correspondence: ; Tel.: +55-16-3315-4680
| |
Collapse
|
3
|
Enzymatic Bioprospecting of Fungi Isolated from a Tropical Rainforest in Mexico. J Fungi (Basel) 2021; 8:jof8010022. [PMID: 35049962 PMCID: PMC8780421 DOI: 10.3390/jof8010022] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 12/11/2022] Open
Abstract
The humid tropical environment provides an ideal place for developing a high diversity of plants; this is why it is an interesting site for the enzymatic bioprospecting of fungi that are responsible for the recycling of organic matter in an efficient and accelerated way and whose enzymes could have multiple biotechnological applications. For this study, 1250 isolates of macroscopic and microscopic fungal morphotypes were collected from soil, leaf litter, and wood. One hundred and fifty strains (50 from each source) were selected for the enzymatic screening. From the first phase, 51 strains with positive activity for laccase, protease, amylase, xylanase, and lipase enzymes were evaluated, of which 20 were isolated from leaf litter, 18 from the soil, and 13 from wood. The 10 best strains were selected for the enzymatic quantification, considering the potency index and the production of at least two enzymes. High laccase activity was detected for Trametes villosa FE35 and Marasmius sp. CE25 (1179 and 710.66 U/mg, respectively), while Daedalea flavida PE47 showed laccase (521.85 U/mg) and protease activities (80.66 U/mg). Fusarium spp. PH79 and FS400 strains had amylase (14.0 U/mg, 49.23 U/mg) and xylanase activities (40.05 U/mg, 36.03 U/mg) respectively. These results confirm the enzymatic potential of fungi that inhabit little-explored tropical rainforests with applications in industry.
Collapse
|
4
|
Lange L, Barrett K, Meyer AS. New Method for Identifying Fungal Kingdom Enzyme Hotspots from Genome Sequences. J Fungi (Basel) 2021; 7:jof7030207. [PMID: 33799907 PMCID: PMC8000046 DOI: 10.3390/jof7030207] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 11/23/2022] Open
Abstract
Fungal genome sequencing data represent an enormous pool of information for enzyme discovery. Here, we report a new approach to identify and quantitatively compare biomass-degrading capacity and diversity of fungal genomes via integrated function-family annotation of carbohydrate-active enzymes (CAZymes) encoded by the genomes. Based on analyses of 1932 fungal genomes the most potent hotspots of fungal biomass processing CAZymes are identified and ranked according to substrate degradation capacity. The analysis is achieved by a new bioinformatics approach, Conserved Unique Peptide Patterns (CUPP), providing for CAZyme-family annotation and robust prediction of molecular function followed by conversion of the CUPP output to lists of integrated “Function;Family” (e.g., EC 3.2.1.4;GH5) enzyme observations. An EC-function found in several protein families counts as different observations. Summing up such observations allows for ranking of all analyzed genome sequenced fungal species according to richness in CAZyme function diversity and degrading capacity. Identifying fungal CAZyme hotspots provides for identification of fungal species richest in cellulolytic, xylanolytic, pectinolytic, and lignin modifying enzymes. The fungal enzyme hotspots are found in fungi having very different lifestyle, ecology, physiology and substrate/host affinity. Surprisingly, most CAZyme hotspots are found in enzymatically understudied and unexploited species. In contrast, the most well-known fungal enzyme producers, from where many industrially exploited enzymes are derived, are ranking unexpectedly low. The results contribute to elucidating the evolution of fungal substrate-digestive CAZyme profiles, ecophysiology, and habitat adaptations, and expand the knowledge base for novel and improved biomass resource utilization.
Collapse
Affiliation(s)
- Lene Lange
- BioEconomy, Research & Advisory, Copenhagen, 2500 Valby, Denmark;
| | - Kristian Barrett
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, Department of Biotechnology and Biomedicine, Building 221, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
- Correspondence: ; Tel.: +45-4525-2600
| |
Collapse
|