1
|
Chueaphromsri P, Kunhorm P, Chaicharoenaudomrung N, Noisa P. Enhancement hispolon production from Phellinus linteus via epigenetic-modified culture to inhibit human breast cancer cells. Biotechnol Lett 2025; 47:29. [PMID: 40011236 DOI: 10.1007/s10529-025-03561-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/19/2024] [Accepted: 01/12/2025] [Indexed: 02/28/2025]
Abstract
Phellinus linteus (PL) is a medicinal fungus known for producing hispolon, a bioactive compound with antioxidant, anti-inflammatory, and anticancer properties. However, the natural scarcity of PL and the unsuccessful cultivation of its fruiting bodies have led to the exploration of alternative methods for enhancing its bioactive compound production. In this study, static fermentation was employed, and Valproic acid (VPA), a histone deacetylase inhibitor (HDACi), was added to the culture medium to induce epigenetic modifications and enhance hispolon production. After 30 days of fermentation, the hispolon concentration was analyzed using high-performance liquid chromatography (HPLC), mycelial dry weight was measured, and the expression of hispolon synthesis-related enzymes was quantified using quantitative PCR (qPCR). Additionally, the anticancer potential of the fermented media was assessed in human breast adenocarcinoma HTB-26 cells using assays for cytotoxicity, reactive oxygen species (ROS) formation, apoptosis, antioxidant activity, and autophagy markers. The results revealed that the addition of 400 µM VPA increased hispolon production by 120% and mycelial dry weight by 41%, likely due to enhanced transcriptional accessibility. Furthermore, the PL fermentation media significantly inhibited HTB-26 cell growth through the induction of ROS formation, autophagy, and apoptosis. These findings suggest that VPA-enhanced static fermentation of PL offers a promising strategy for optimizing hispolon production and developing effective anticancer therapeutics.
Collapse
Affiliation(s)
- Phongsakorn Chueaphromsri
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Phongsakorn Kunhorm
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Luo L, Dai F, Xu Z, Guan J, Fei G, Qu J, Yao M, Xue Y, Zhou Y, Zou X. Core microbes in Cordyceps militaris sclerotia and their nitrogen metabolism-related ecological functions. Microbiol Spectr 2024; 12:e0105324. [PMID: 39162541 PMCID: PMC11448085 DOI: 10.1128/spectrum.01053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/01/2024] [Indexed: 08/21/2024] Open
Abstract
Cordyceps militaris infects insects and forms sclerotia within the insect remains, establishing insect-microbe complexes. Here, C. militaris sclerotia samples from a single location in China over a 5-year period were subjected to high-throughput DNA sequencing, and the core microbes (which were stably enriched in the sclerotia over the 5 years) were identified. Next, seven bacterial strains were isolated from the C. militaris sclerotia, their biochemical characteristics were assessed, and they were co-cultured with C. militaris to study their effects on C. militaris metabolite production and biomass. Furthermore, the effects of NH4, NO3, and peptone media on C. militaris were compared. The results showed that Rhodococcus, Phyllobacterium, Pseudomonas, Achromobacter, Ensifer, Stenotrophomonas, Sphingobacterium, Variovorax, and Acinetobacter were the core microbes. Although co-culture of C. militaris with the seven bacterial strains isolated from the sclerotia did not directly increase the cordycepin level, they all had NO3 reduction ability, and four had urea decomposition ability. Meanwhile, C. militaris in NH4 medium had an increased cordycepin level compared to C. militaris in the other two media. From this, we inferred that bacteria in the sclerotia can convert NO3 to NH4, and then cordycepin is produced using NH4, which was confirmed by RNA-seq and real-time fluorescence quantitative PCR. Thus, bacteria in the sclerotia may indirectly affect the C. militaris metabolite production by regulating nitrogen metabolism. In summary, there are stable core microbes in the C. militaris sclerotia, and they may directly and indirectly affect the growth and metabolite production of C. militaris. IMPORTANCE The model Cordyceps species Cordyceps militaris is rich in therapeutic compounds. It has recently been demonstrated that symbiotic microbes in sclerotia affect Cordyceps' growth, development, and secondary metabolite production. In this study, core microbes were identified based on C. militaris sclerotia samples obtained from the same site over 5 years. Additionally, bacterial strains isolated from C. militaris sclerotia were found to affect metabolite production and nitrogen utilization, based on functional tests. Moreover, based on the bacterial nitrogen metabolism capacity in the sclerotia and its influence on C. militaris metabolite production, we deduced that bacteria in the sclerotia can indirectly affect C. militaris metabolite production by regulating nitrogen metabolism. This is the first report on how bacteria in the sclerotia affect C. militaris metabolite production from the perspective of the nitrogen cycle. The results increase our understanding of microbial functions in C. militaris sclerotia.
Collapse
Affiliation(s)
- Li Luo
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Fei Dai
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Zhongshun Xu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jingqiang Guan
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Gangxiang Fei
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Jiaojiao Qu
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Min Yao
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Yuan Xue
- Anshun Branch of Guizhou Tobacco Company, Anshun, Guizhou, China
| | - Yeming Zhou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Xiao Zou
- Institute of Fungus Resources, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region, Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
3
|
Hu Y, Wu Y, Song J, Ma M, Xiao Y, Zeng B. Advancing Cordyceps militaris Industry: Gene Manipulation and Sustainable Biotechnological Strategies. Bioengineering (Basel) 2024; 11:783. [PMID: 39199741 PMCID: PMC11351413 DOI: 10.3390/bioengineering11080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 09/01/2024] Open
Abstract
Cordyceps militaris is considered to be of great medicinal potential due to its remarkable pharmacological effects, safety, and edible characteristics. With the completion of the genome sequence and the advancement of efficient gene-editing technologies, coupled with the identification of gene functions in Cordyceps militaris, this fungus is poised to emerge as an outstanding strain for medicinal engineering applications. This review focuses on the development and application of genomic editing techniques, including Agrobacterium tumefaciens-mediated transformation (ATMT), PEG-mediated protoplast transformation (PMT), and CRISPR/Cas9. Through the application of these techniques, researchers can engineer the biosynthetic pathways of valuable secondary metabolites to boost yields; such metabolites include cordycepin, polysaccharides, and ergothioneine. Furthermore, by identifying and modifying genes that influence the growth, disease resistance, and tolerance to environmental stress in Cordyceps militaris, it is possible to stimulate growth, enhance desirable traits, and increase resilience to unfavorable conditions. Finally, the green sustainable industrial development of C. militaris using agricultural waste to produce high-value-added products and the future research directions of C. militaris were discussed. This review will provide future directions for the large-scale production of bioactive ingredients, molecular breeding, and sustainable development of C. militaris.
Collapse
Affiliation(s)
| | | | | | | | | | - Bin Zeng
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China; (Y.H.); (Y.W.); (J.S.); (M.M.); (Y.X.)
| |
Collapse
|
4
|
Peng T, Guo J, Tong X. Advances in biosynthesis and metabolic engineering strategies of cordycepin. Front Microbiol 2024; 15:1386855. [PMID: 38903790 PMCID: PMC11188397 DOI: 10.3389/fmicb.2024.1386855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/26/2024] [Indexed: 06/22/2024] Open
Abstract
Cordyceps militaris, also called as bei-chong-cao, is an insect-pathogenic fungus from the Ascomycota phylum and the Clavicipitaceae family. It is a valuable filamentous fungus with medicinal and edible properties that has been utilized in traditional Chinese medicine (TCM) and as a nutritious food. Cordycepin is the bioactive compound firstly isolated from C. militaris and has a variety of nutraceutical and health-promoting properties, making it widely employed in nutraceutical and pharmaceutical fields. Due to the low composition and paucity of wild resources, its availability from natural sources is limited. With the elucidation of the cordycepin biosynthetic pathway and the advent of synthetic biology, a green cordycepin biosynthesis in Saccharomyces cerevisiae and Metarhizium robertsii has been developed, indicating a potential sustainable production method of cordycepin. Given that, this review primarily focused on the metabolic engineering and heterologous biosynthesis strategies of cordycepin.
Collapse
Affiliation(s)
| | - Jinlin Guo
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xinxin Tong
- The Ministry of Education Key Laboratory of Standardization of Chinese Medicine, Key Laboratory of Systematic Research of Distinctive Chinese Medicine Resources in Southwest China, Resources Breeding Base of Co-Founded, College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Li X, Wang X, Liang F, Wang Z, Liu W, Ge Y, Yang S, Liu Y, Li Y, Cheng X, Li W. Biological characteristics of Cordyceps militaris single mating-type strains. Arch Microbiol 2024; 206:225. [PMID: 38642078 DOI: 10.1007/s00203-024-03952-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/22/2024]
Abstract
Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.
Collapse
Affiliation(s)
- Xiu'E Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Xin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Fengji Liang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Zhaoxin Wang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Wenshuo Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yupeng Ge
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Shude Yang
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yu Liu
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China
| | - Yin Li
- Yantai Hospital of Traditional Chinese Medicine, Yantai, 264013, China
| | - Xianhao Cheng
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| | - Weihuan Li
- Shandong Key Laboratory of Edible Fruiting bodies Technology, School of Agriculture, Ludong University, Yantai, 264013, China.
- Yantai Edible and Medicinal Mushroom Technology Innovation Center, Yantai, 264013, China.
- School of Agriculture, Ludong University, No.186, Hongqi Mid-Road, Zhifu District, Yantai, Shandong Province, 264025, China.
| |
Collapse
|
6
|
Moreno CM, Moreno JN, Valdez MC, Baldwin MP, Vallor AC, Carvalho PB. Fungal-Mediated Biotransformation of the Plant Growth Regulator Forchlorfenuron by Cunninghamella elegans. Metabolites 2024; 14:101. [PMID: 38392993 PMCID: PMC10890479 DOI: 10.3390/metabo14020101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
The synthetic cytokinin forchlorfenuron (FCF), while seemingly presenting relatively low toxicity for mammalian organisms, has been the subject of renewed scrutiny in the past few years due to its increasing use in fruit crops and potential for bioaccumulation. Despite many toxicological properties of FCF being known, little research has been conducted on the toxicological effects of its secondary metabolites. Given this critical gap in the existing literature, understanding the formation of relevant FCF secondary metabolites and their association with mammalian metabolism is essential. To investigate the formation of FCF metabolites in sufficient quantities for toxicological studies, a panel of four fungi were screened for their ability to catalyze the biotransformation of FCF. Of the organisms screened, Cunninghamella elegans (ATCC 9245), a filamentous fungus, was found to convert FCF to 4-hydroxyphenyl-forchlorfenuron, the major FCF secondary metabolite identified in mammals, after 26 days. Following the optimization of biotransformation conditions using a solid support system, media screening, and inoculation with a solid pre-formed fungal mass of C. elegans, this conversion time was significantly reduced to 7 days-representing a 73% reduction in total reaction time as deduced from the biotransformation products and confirmed by LC-MS, NMR spectroscopic data, as well as a comparison with synthetically prepared metabolites. Our study provides the first report of the metabolism of FCF by C. elegans. These findings suggest that C. elegans can produce FCF secondary metabolites consistent with those produced via mammalian metabolism and could be used as a more efficient, cost-effective, and ethical alternative for producing those metabolites in useful quantities for toxicological studies.
Collapse
Affiliation(s)
- Charles M Moreno
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Jaclyn N Moreno
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Matthew C Valdez
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Melinda P Baldwin
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| | - Ana C Vallor
- Department of Biology, School of Mathematics, Science, and Engineering, University of the Incarnate Word, San Antonio, TX 78209, USA
| | - Paulo B Carvalho
- Department of Pharmaceutical Sciences, Feik School of Pharmacy, University of the Incarnate Word, San Antonio, TX 78212, USA
| |
Collapse
|
7
|
Lv H, Li WJ, Xu P, Tang JG, Zheng Y, Wan Y, Lin Y, Wang H, Li XN. Structural diversity of microbial secondary metabolites based on chemical epigenetic manipulation. Bioorg Chem 2024; 143:107093. [PMID: 38185012 DOI: 10.1016/j.bioorg.2023.107093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/09/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Fungi are microorganisms with biosynthetic potential that are capable of producing a wide range of chemically diverse and biologically interesting small molecules. Chemical epigenetic manipulation has been increasingly explored as a simple and powerful tool to induce the production of additional microbial secondary metabolites in fungi. This review focuses on chemical epigenetic manipulation in fungi and summarizes 379 epigenetic manipulation products discovered from 2008 to 2022 to promote the discovery of their medicinal value.
Collapse
Affiliation(s)
- Huawei Lv
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wen-Jing Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ping Xu
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jia-Gui Tang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Zheng
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Wan
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yan Lin
- Department of Pharmacy, Tongde Hospital of Zhejiang Province, Hangzhou 310012, China.
| | - Hong Wang
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xing-Nuo Li
- College of Pharmaceutical Science & Key Laboratory of Marine Fishery Resources Exploitment & Utilization of Zhejiang Province, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
8
|
Zhang H, Deng L, Luo S, Liu L, Yang G, Zhang Y, Gao B, Yang D, Wang X, Li S, Li X, Jiang Y, Lao W, Vriesekoop F. Evidence for Regulation of Cordycepin Biosynthesis by Transcription Factors Krüppel-Like Factor 4 and Retinoid X Receptor Alpha in Caterpillar Medicinal Mushroom Cordyceps militaris (Ascomycetes). Int J Med Mushrooms 2024; 26:19-40. [PMID: 39171629 DOI: 10.1615/intjmedmushrooms.2024054952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Cordyceps militaris, Chinese traditional medicinal fungus, has many bioactive properties. Cordycepin (3'-deoxyadenosine) is a major bioactive component of C. militaris. Various methods can significantly elevate cordycepin production, which suggests a diverse set of metabolic regulatory mechanisms. Thus, we aimed to identify transcription factors that regulate cordycepin biosynthesis pathways. Transcriptome analysis of wild-type C. militaris, C. militaris GYS60, a cordycepin high-producing strain, and C. militaris GYS80, a low-producing strain, were used to measure expression and function of genes related to cordycepin biosynthesis. The transcriptome expression data were confirmed by quantitative real-time polymerase chain reaction. We identified 155 relevant transcription factors in 19 families that included Fork head/winged helix factors, other C4 zinc finger-type factors, C2H2 zinc finger factors, tryptophan cluster factors, nuclear receptors with C4 zinc fingers, homeodomain factors, and Rel homology region factors. Energy generation and amino acid conversion pathways were activated in GYS60 so that abundance of cordycepin precursors was increased. Genes and transcription factors for rate-limiting enzymes in these pathways were identified. Overexpression of two key transcription factors, Kruppel-like factor 4 (Klf4) and Retinoid X receptor alpha (Rxra), promoted high cordycepin production in GYS60. In GYS60, Klf4 and Rxra were responsible for upregulation of genes in cordycepin biosynthesis, namely an oxidoreductase, 3',5'-cyclic AMP phosphodiesterase, a transferase, and adenylate cyclase. Upregulation of these genes increased 3'-AMP content, thereby elevating cordycepin synthesis.
Collapse
Affiliation(s)
- Hucheng Zhang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Lina Deng
- Beijing Health Vocational College, Fangshan District, 102402 Beijing, People's Republic of China
| | - Shuai Luo
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Linying Liu
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Guowei Yang
- College of Bioengineering, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100171 Beijing, People's Republic of China
| | - Yuning Zhang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Bo Gao
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Dongqing Yang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Xiaojie Wang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Shuangshi Li
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Xingjuan Li
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Yaguang Jiang
- Bioengineering College, Beijing Polytechnic, Yizhuang Economic and Technological Development Zone, Daxing District, 100176 Beijing, People's Republic of China
| | - Wenyan Lao
- School of Biochemical Engineering of Beijing Union University
| | - Frank Vriesekoop
- Department of Food Science, Harper Adams University, Newport TF10 8NB, United Kingdom
| |
Collapse
|
9
|
Long L, Liu Z, Wang Y, Lin Q, Ding S, Li C, Deng C. High-level production of cordycepin by the xylose-utilising Cordyceps militaris strain 147 in an optimised medium. BIORESOURCE TECHNOLOGY 2023; 388:129742. [PMID: 37734485 DOI: 10.1016/j.biortech.2023.129742] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/25/2023] [Accepted: 09/06/2023] [Indexed: 09/23/2023]
Abstract
Cordycepin is an important active metabolite of Cordyceps militaris. Xylose, an attractive feedstock for producing chemicals through microbial fermentation, cannot be effectively utilised by many reported C. militaris strains. Herein, a xylose-utilising C. militaris strain 147 produced the highest level of cordycepin (3.03 g/L) in xylose culture. Xylose, alanine, and ammonium citrate were determined as the main affecting factors on the cordycepin production using a Plackett-Burman design. The combination of these factors was optimised using response surface methodology, and the maximal 6.54 g/L of cordycepin was produced by the fungus in the optimal medium. Transcriptome analysis revealed that xylose utilisation upregulated the transcriptional levels of genes participating in purine and energy metabolisms in the fungus, which may facilitate the formation of precursors for cordycepin biosynthesis. This investigation provides new insights into the efficient production of cordycepin and is conducive to the valorisation of biomass rich in xylose.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilisation of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yizhou Wang
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilisation of Wild Plants, Nanjing, 211111, China.
| | - Shaojun Ding
- Jiangsu Co-Innovation Centre for Efficient Processing and Utilisation of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilisation of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Chuanhua Li
- Key Laboratory of Applied Mycological Resources and Utilisation, Ministry of Agriculture, National Engineering Research Centre of Edible Fungi; Shanghai Key Laboratory of Agricultural Genetics and Breeding, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chunying Deng
- Guizhou Institute of Biology, Guizhou Academy of Sciences, Guiyang 550009, China.
| |
Collapse
|
10
|
Xue M, Hou X, Fu J, Zhang J, Wang J, Zhao Z, Xu D, Lai D, Zhou L. Recent Advances in Search of Bioactive Secondary Metabolites from Fungi Triggered by Chemical Epigenetic Modifiers. J Fungi (Basel) 2023; 9:jof9020172. [PMID: 36836287 PMCID: PMC9961798 DOI: 10.3390/jof9020172] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/20/2023] [Accepted: 01/21/2023] [Indexed: 01/31/2023] Open
Abstract
Genomic analysis has demonstrated that many fungi possess essential gene clusters for the production of previously unobserved secondary metabolites; however, these genes are normally reduced or silenced under most conditions. These cryptic biosynthetic gene clusters have become treasures of new bioactive secondary metabolites. The induction of these biosynthetic gene clusters under stress or special conditions can improve the titers of known compounds or the production of novel compounds. Among the inducing strategies, chemical-epigenetic regulation is considered a powerful approach, and it uses small-molecule epigenetic modifiers, which mainly act as the inhibitors of DNA methyltransferase, histone deacetylase, and histone acetyltransferase, to promote changes in the structure of DNA, histones, and proteasomes and to further activate cryptic biosynthetic gene clusters for the production of a wide variety of bioactive secondary metabolites. These epigenetic modifiers mainly include 5-azacytidine, suberoylanilide hydroxamic acid, suberoyl bishydroxamic acid, sodium butyrate, and nicotinamide. This review gives an overview on the method of chemical epigenetic modifiers to trigger silent or low-expressed biosynthetic pathways to yield bioactive natural products through external cues of fungi, mainly based on the research progress in the period from 2007 to 2022. The production of about 540 fungal secondary metabolites was found to be induced or enhanced by chemical epigenetic modifiers. Some of them exhibited significant biological activities such as cytotoxic, antimicrobial, anti-inflammatory, and antioxidant activity.
Collapse
|