1
|
Wang H, Zhang T, Chen K, Long L, Ding S. Biochemical Characterization and Polyester-Binding/Degrading Capability of Two Cutinases from Aspergillus fumigatus. Microorganisms 2025; 13:1121. [PMID: 40431293 PMCID: PMC12114444 DOI: 10.3390/microorganisms13051121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Revised: 05/07/2025] [Accepted: 05/10/2025] [Indexed: 05/29/2025] Open
Abstract
Two recombinant cutinases, AfCutA and AfCutB, derived from Aspergillus fumigatus, were heterologously expressed in Pichia pastoris and systematically characterized for their biochemical properties and polyester-degrading capabilities. AfCutA demonstrated superior catalytic performance compared with AfCutB, displaying higher optimal pH (8.0-9.0 vs. 7.0-8.0), higher optimal temperature (60 °C vs. 50 °C), and greater thermostability. AfCutA exhibited increased hydrolytic activity toward p-nitrophenyl esters (C4-C16) and synthetic polyesters. Additionally, AfCutA released approximately 3.2-fold more acetic acid from polyvinyl acetate (PVAc) hydrolysis than AfCutB. Quartz crystal microbalance with dissipation monitoring (QCM-D) revealed rapid adsorption of both enzymes onto polyester films. However, their adsorption capacity on poly (ε-caprolactone) (PCL) films was significantly higher than on polybutylene succinate (PBS) films, and was influenced by pH. Comparative modeling of catalytic domains identified distinct structural differences between the two cutinases. AfCutA possesses a shallower substrate-binding cleft, fewer acidic residues, and more extensive hydrophobic regions around the active site, potentially explaining its enhanced interfacial activation and catalytic efficiency toward synthetic polyester substrates. The notably superior performance of AfCutA suggests its potential as a biocatalyst in industrial applications, particularly in polyester waste bioremediation and sustainable polymer processing.
Collapse
Affiliation(s)
- Haizhen Wang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (L.L.)
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Tianrui Zhang
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (L.L.)
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Kaixiang Chen
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (L.L.)
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Liangkun Long
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (L.L.)
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaojun Ding
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; (H.W.); (L.L.)
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
2
|
Garcia Simão RDC, Rocha PMC, Martins JTK, Turkiewicz M, Plewka J, da-Conceição Silva JL, Maller A, Kadowaki MK, Costa-Júnior ÁPS. Exploring biodegradable alternatives: microorganism-mediated plastic degradation and environmental policies for sustainable plastic management. Arch Microbiol 2024; 206:457. [PMID: 39499332 DOI: 10.1007/s00203-024-04170-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/12/2024] [Indexed: 11/07/2024]
Abstract
Plastics offer versatility, durability and low production costs, but they also pose environmental and health risks due to improper disposal, accumulation in water bodies, low recycling rates and temporal action that causes physicochemical changes in plastics and the release of toxic products to animal health and nature. Some microorganisms may play crucial roles in improving plastic waste management in the future. Cunningamella echinulata has been identified as a promising candidate that remains viable for long periods and produces a cutinase that is capable of degrading plastic. Other recent approaches involving the use of microorganisms are discussed in this review. However, there does not seem to be a single science that is efficient or most appropriate for solving the problem of plastic pollution on the planet at present. Regulations, especially the implementation of different laws that address the entire plastic cycle in different countries, such as Brazil, the USA, China and the European Union, play important roles in the management of this waste and can contribute to reducing this problem. In the context of the transversality of the information compiled here, the current limitations are discussed, and an effective plan is proposed to reduce plastic pollution. Although it is challenging, it involves implementing legislation, promoting sustainable alternatives, improving collection and recycling systems, encouraging reuse, supporting research and technological innovation, promoting corporate responsibility, collaborating globally, raising public awareness, optimizing waste management and, above all, continuously monitoring the progress of actions based on measurable metrics.
Collapse
Affiliation(s)
- Rita de Cássia Garcia Simão
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil.
| | - Paula Maria Carneiro Rocha
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Júlia Thays Kava Martins
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Maurício Turkiewicz
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Jacqueline Plewka
- Hospital Universitário do Oeste do Paraná, HUOP, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - José Luis da-Conceição Silva
- Laboratório de Bioquímica Molecular, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste do Paraná, Unioeste, Cascavel, PR, Brazil
| | - Alexandre Maller
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | - Marina Kimiko Kadowaki
- Laboratório de Bioquímica de Microrganismos, Centro de Ciências Médicas e Farmacêuticas, Universidade Estadual do Oeste Do Paraná, UNIOESTE, Cascavel, PR, Brazil
| | | |
Collapse
|
3
|
Alvarado E, Castro R, Castro-Rodríguez JA, Navarro A, Farrés A. Poly(lactic acid) Degradation by Recombinant Cutinases from Aspergillus nidulans. Polymers (Basel) 2024; 16:1994. [PMID: 39065311 PMCID: PMC11281152 DOI: 10.3390/polym16141994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Poly(lactic-acid) (PLA) is a biodegradable polymer widely used as a packaging material. Its monomer, lactic acid, and its derivatives have been used in the food, cosmetic, and chemical industries. The accumulation of PLA residues leads to the development of green degrading methodologies, such as enzymatic degradation. This work evaluates the potential use of three cutinolytic enzymes codified in the Aspergillus nidulans genome to achieve this goal. The results are compared with those obtained with proteinase K from Tritirachium album, which has been reported as a PLA-hydrolyzing enzyme. The results show that all three cutinases act on the polymer, but ANCUT 1 releases the highest amount of lactic acid (25.86 mM). Different reaction conditions assayed later led to double the released lactic acid. A decrease in weight (45.96%) was also observed. The enzyme showed activity both on poly L lactic acid and on poly D lactic acid. Therefore, this cutinase offers the potential to rapidly degrade these package residues, and preliminary data show that this is feasible.
Collapse
Affiliation(s)
| | | | | | | | - Amelia Farrés
- Departamento de Alimentos y Biotecnología, Facultad de Química, UNAM, Mexico City 04510, Mexico; (E.A.); (R.C.); (J.A.C.-R.); (A.N.)
| |
Collapse
|