1
|
Swanson K, Blakeslee AMH, Fowler AE, Roozbehi S, Field EK. Microbial communities are indicators of parasite infection status. Environ Microbiol 2023; 25:3423-3434. [PMID: 37918974 DOI: 10.1111/1462-2920.16533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/20/2023] [Indexed: 11/04/2023]
Abstract
Growing evidence suggests that microbiomes have been shaping the evolutionary pathways of macroorganisms for millennia and that these tiny symbionts can influence, and possibly even control, species interactions like host-parasite relationships. Yet, while studies have investigated host-parasites and microbiomes separately, little has been done to understand all three groups synergistically. Here, we collected infected and uninfected Eurypanopeus depressus crab hosts from a coastal North Carolina oyster reef three times over 4 months. Infected crabs demonstrated an external stage of the rhizocephalan parasite, Loxothylacus panopaei. Community analyses revealed that microbial richness and diversity were significantly different among tissue types (uninfected crab, infected crab, parasite externae and parasite larvae) and over time (summer and fall). Specifically, the microbial communities from parasite externae and larvae had similar microbiomes that were consistent through time. Infected crabs demonstrated microbial communities spanning those of their host and parasite, while uninfected crabs showed more distinctive communities with greater variability over time. Microbial communities were also found to be indicators of early-stage infections. Resolving the microbial community composition of a host and its parasite is an important step in understanding the microbiome's role in the host-parasite relationship and determining how this tripartite relationship impacts coevolutionary processes.
Collapse
Affiliation(s)
- Kyle Swanson
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - April M H Blakeslee
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Amy E Fowler
- Environmental Science & Policy Department, George Mason University, Fairfax, Virginia, USA
| | - Sara Roozbehi
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| | - Erin K Field
- Department of Biology, East Carolina University, Greenville, North Carolina, USA
| |
Collapse
|
2
|
Bojko J, McCoy KA, M H Blakeslee A. 'Candidatus Mellornella promiscua' n. gen. n. sp. (Alphaproteobacteria: Rickettsiales: Anaplasmataceae): an intracytoplasmic, hepatopancreatic, pathogen of the flatback mud crab, Eurypanopeus depressus. J Invertebr Pathol 2022; 190:107737. [PMID: 35247466 DOI: 10.1016/j.jip.2022.107737] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/25/2022] [Accepted: 02/27/2022] [Indexed: 01/02/2023]
Abstract
Bacterial pathogens are a long-standing threat to the longevity and survival of crustacean hosts. Their presence and continuing emergence require close monitoring to understand their impact on fished, cultured, and wild crustacean populations. We describe a new bacterial pathogen belonging to the Anaplasmataceae family (Alphaproteobacteria: Rickettsiales), providing pathological, ultrastructural, phylogenetic, and genomic evidence to determine a candidate genus and species ('Candidatus Mellornella promiscua'). This bacterium was found to infect the mud crab, Eurypanopeus depressus, on the North Carolina coastline (USA) at a prevalence of 10.8%. 'Candidatus Mellornella promiscua' was often observed in co-infection with the rhizocephalan barnacle, Loxothylacus panopaei. The bacterium was only found in the hepatopancreas of the mud crab host, causing cytoplasmic hypertrophy, tubule necrosis, large plaques within the cytoplasm of the host cell, and an abundance of sex-pili. The circular genome of the bacterium is 1,013,119bp and encodes 939 genes in total. Phylogenetically, the new bacterium branches within the Anaplasmataceae. The genome is dissimilar from other described bacteria, with 16S gene similarity observed at a maximum of 85.3% to a Wolbachia endosymbiont. We explore this novel bacterial pathogen using genomic, phylogenetic, ultrastructural, and pathological methods, discussing these results in light of current bacterial taxonomy, similarity to other bacterial pathogens, and the potential impact upon the surrounding disease ecology of the host and benthic ecosystem.
Collapse
Affiliation(s)
- Jamie Bojko
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK; School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BA, UK.
| | - Krista A McCoy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, FL 34946, USA
| | | |
Collapse
|
3
|
Tobias ZJC, Fowler AE, Blakeslee AMH, Darling JA, Torchin ME, Miller AW, Ruiz GM, Tepolt CK. Invasion history shapes host transcriptomic response to a body-snatching parasite. Mol Ecol 2021; 30:4321-4337. [PMID: 34162013 PMCID: PMC10128110 DOI: 10.1111/mec.16038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 05/27/2021] [Accepted: 06/11/2021] [Indexed: 01/04/2023]
Abstract
By shuffling biogeographical distributions, biological invasions can both disrupt long-standing associations between hosts and parasites and establish new ones. This creates natural experiments with which to study the ecology and evolution of host-parasite interactions. In estuaries of the Gulf of Mexico, the white-fingered mud crab (Rhithropanopeus harrisii) is infected by a native parasitic barnacle, Loxothylacus panopaei (Rhizocephala), which manipulates host physiology and behaviour. In the 1960s, L. panopaei was introduced to the Chesapeake Bay and has since expanded along the southeastern Atlantic coast, while host populations in the northeast have so far been spared. We use this system to test the host's transcriptomic response to parasitic infection and investigate how this response varies with the parasite's invasion history, comparing populations representing (i) long-term sympatry between host and parasite, (ii) new associations where the parasite has invaded during the last 60 years and (iii) naïve hosts without prior exposure. A comparison of parasitized and control crabs revealed a core response, with widespread downregulation of transcripts involved in immunity and moulting. The transcriptional response differed between hosts from the parasite's native range and where it is absent, consistent with previous observations of increased susceptibility in populations lacking exposure to the parasite. Crabs from the parasite's introduced range, where prevalence is highest, displayed the most dissimilar response, possibly reflecting immune priming. These results provide molecular evidence for parasitic manipulation of host phenotype and the role of gene regulation in mediating host-parasite interactions.
Collapse
Affiliation(s)
- Zachary J. C. Tobias
- MIT-WHOI Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA, USA
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Amy E. Fowler
- Department of Environmental Science and Policy, George Mason University, Fairfax, VA, USA
| | | | - John A. Darling
- National Exposure Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Mark E. Torchin
- Smithsonian Tropical Research Institute, Balboa, Ancon, Republic of Panama
| | | | - Gregory M. Ruiz
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| | - Carolyn K. Tepolt
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Smithsonian Environmental Research, Center, Edgewater, MD, USA
| |
Collapse
|
4
|
Spatial Dynamics of Two Host-Parasite Relationships on Intertidal Oyster Reefs. DIVERSITY 2021. [DOI: 10.3390/d13060260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intertidal reefs comprised of the eastern oyster (Crassostrea virginica) have long experienced habitat loss, altering habitat patch characteristics of size and distance from edge to interior, potentially influencing spatial dynamics of host-parasite relationships. Using two parasitic relationships, one between eastern oyster host and parasitic oyster pea crab (Zaops ostreum) and the other between a xanthid crab (Eurypanopeus depressus) and a parasitic rhizocephalan barnacle (Loxothylacus panopaei), we examined how host-parasite population characteristics varied on intertidal reefs by season, reef size, and distance from edge to interior. Pea crab prevalence was more related to habitat characteristics rather than host density, as pea crab prevalence was the highest on large reefs and along edges, areas of comparatively lower oyster densities. Reef size did not influence densities of parasitized or non-parasitized xanthid crabs, but densities varied from edge to interior. Non-parasitized xanthids had significantly lower densities along the reef edge compared to more interior reef locations, while parasitized xanthid crabs had no significant edge to interior pattern. Organismal size had a varied relationship based upon habitat characteristics, as pea crab carapace width (CW) varied interactively with season and reef size, whereas CW of parasitized/non-parasitized xanthid crabs varied significantly between edge and interior locations. These results demonstrated that influential habitat characteristics, such as patch size and edge versus interior, are both highly species and host-parasite specific. Therefore, continued habitat alteration and fragmentation of critical marine habitats may further impact spatial dynamics of host-parasite relationships.
Collapse
|
5
|
Tepolt CK, Darling JA, Blakeslee AMH, Fowler AE, Torchin ME, Miller AW, Ruiz GM. Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic. Evol Appl 2020; 13:545-558. [PMID: 32431735 PMCID: PMC7045710 DOI: 10.1111/eva.12865] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 12/26/2022] Open
Abstract
Parasitism can represent a potent agent of selection, and introduced parasites have the potential to substantially alter their new hosts' ecology and evolution. While significant impacts have been reported for parasites that switch to new host species, the effects of macroparasite introduction into naïve populations of host species with which they have evolved remain poorly understood. Here, we investigate how the estuarine white-fingered mud crab (Rhithropanopeus harrisii) has adapted to parasitism by an introduced rhizocephalan parasite (Loxothylacus panopaei) that castrates its host. While the host crab is native to much of the East and Gulf Coasts of North America, its parasite is native only to the southern end of this range. Fifty years ago, the parasite invaded the mid-Atlantic, gradually expanding through previously naïve host populations. Thus, different populations of the same host species have experienced different degrees of historical interaction (and thus potential evolutionary response time) with the parasite: long term, short term, and naïve. In nine estuaries across this range, we examined whether and how parasite prevalence and host susceptibility to parasitism differs depending on the length of the host's history with the parasite. In field surveys, we found that the parasite was significantly more prevalent in its introduced range (i.e., short-term interaction) than in its native range (long-term interaction), a result that was also supported by a meta-analysis of prevalence data covering the 50 years since its introduction. In controlled laboratory experiments, host susceptibility to parasitism was significantly higher in naïve hosts than in hosts from the parasite's native range, suggesting that host resistance to parasitism is under selection. These results suggest that differences in host-parasite historical interaction can alter the consequences of parasite introductions in host populations. As anthropogenically driven range shifts continue, disruptions of host-parasite evolutionary relationships may become an increasingly important driver of ecological and evolutionary change.
Collapse
Affiliation(s)
- Carolyn K. Tepolt
- Department of BiologyWoods Hole Oceanographic InstitutionWoods HoleMAUSA
- Smithsonian Environmental Research CenterEdgewaterMDUSA
| | - John A. Darling
- National Exposure Research LaboratoryUS Environmental Protection AgencyResearch Triangle ParkNCUSA
| | | | - Amy E. Fowler
- Department of Environmental Science and PolicyGeorge Mason UniversityFairfaxVAUSA
| | - Mark E. Torchin
- Smithsonian Tropical Research InstituteBalboaAnconRepublic of Panama
| | | | | |
Collapse
|
6
|
Host and parasite thermal ecology jointly determine the effect of climate warming on epidemic dynamics. Proc Natl Acad Sci U S A 2018; 115:744-749. [PMID: 29311324 DOI: 10.1073/pnas.1705067115] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Host-parasite systems have intricately coupled life cycles, but each interactor can respond differently to changes in environmental variables like temperature. Although vital to predicting how parasitism will respond to climate change, thermal responses of both host and parasite in key traits affecting infection dynamics have rarely been quantified. Through temperature-controlled experiments on an ectothermic host-parasite system, we demonstrate an offset in the thermal optima for survival of infected and uninfected hosts and parasite production. We combine experimentally derived thermal performance curves with field data on seasonal host abundance and parasite prevalence to parameterize an epidemiological model and forecast the dynamical responses to plausible future climate-warming scenarios. In warming scenarios within the coastal southeastern United States, the model predicts sharp declines in parasite prevalence, with local parasite extinction occurring with as little as 2 °C warming. The northern portion of the parasite's current range could experience local increases in transmission, but assuming no thermal adaptation of the parasite, we find no evidence that the parasite will expand its range northward under warming. This work exemplifies that some host populations may experience reduced parasitism in a warming world and highlights the need to measure host and parasite thermal performance to predict infection responses to climate change.
Collapse
|
7
|
Gehman ALM, Byers JE. Non-native parasite enhances susceptibility of host to native predators. Oecologia 2016; 183:919-926. [PMID: 27942863 DOI: 10.1007/s00442-016-3784-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 11/19/2016] [Indexed: 11/28/2022]
Abstract
Parasites often alter host physiology and behavior, which can enhance predation risk for infected hosts. Higher consumption of parasitized prey can in turn lead to a less parasitized prey population (the healthy herd hypothesis). Loxothylacus panopaei is a non-native castrating barnacle parasite on the mud crab Eurypanopeus depressus along the Atlantic coast. Through prey choice mesocosm experiments and a field tethering experiment, we investigated whether the predatory crab Callinectes sapidus and other predators preferentially feed on E. depressus infected with L. panopaei. We found that C. sapidus preferentially consumed infected E. depressus 3 to 1 over visibly uninfected E. depressus in the mesocosm experiments. Similarly, infected E. depressus were consumed 1.2 to 1 over uninfected conspecifics in field tethering trials. We evaluated a mechanism behind this skewed prey choice, specifically whether L. panopaei affects E. depressus movement, making infected prey more vulnerable to predator attack. Counter to our expectations, infected E. depressus ran faster during laboratory trials than uninfected E. depressus, suggesting that quick movement may not decrease predation risk and seems instead to make the prey more vulnerable. Ultimately, the preferential consumption of L. panopaei-infected prey by C. sapidus highlights how interactions between organisms could affect where novel parasites are able to thrive.
Collapse
Affiliation(s)
- Alyssa-Lois M Gehman
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA.
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, Athens, GA, 30602, USA
| |
Collapse
|
8
|
Gehman ALM, Grabowski JH, Hughes AR, Kimbro DL, Piehler MF, Byers JE. Predators, environment and host characteristics influence the probability of infection by an invasive castrating parasite. Oecologia 2016; 183:139-149. [PMID: 27722800 DOI: 10.1007/s00442-016-3744-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 09/29/2016] [Indexed: 02/02/2023]
Abstract
Not all hosts, communities or environments are equally hospitable for parasites. Direct and indirect interactions between parasites and their predators, competitors and the environment can influence variability in host exposure, susceptibility and subsequent infection, and these influences may vary across spatial scales. To determine the relative influences of abiotic, biotic and host characteristics on probability of infection across both local and estuary scales, we surveyed the oyster reef-dwelling mud crab Eurypanopeus depressus and its parasite Loxothylacus panopaei, an invasive castrating rhizocephalan, in a hierarchical design across >900 km of the southeastern USA. We quantified the density of hosts, predators of the parasite and host, the host's oyster reef habitat, and environmental variables that might affect the parasite either directly or indirectly on oyster reefs within 10 estuaries throughout this biogeographic range. Our analyses revealed that both between and within estuary-scale variation and host characteristics influenced L. panopaei prevalence. Several additional biotic and abiotic factors were positive predictors of infection, including predator abundance and the depth of water inundation over reefs at high tide. We demonstrate that in addition to host characteristics, biotic and abiotic community-level variables both serve as large-scale indicators of parasite dynamics.
Collapse
Affiliation(s)
- Alyssa-Lois M Gehman
- Odum School of Ecology, University of Georgia, 140 E. Green St, 30602, Athens, GA, USA.
| | | | | | | | - Michael F Piehler
- Institute of Marine Sciences, University of North Carolina, Morehead City, NC, 28557, USA
| | - James E Byers
- Odum School of Ecology, University of Georgia, 140 E. Green St, 30602, Athens, GA, USA
| |
Collapse
|
9
|
Noever C, Olson A, Glenner H. Two new cryptic and sympatric species of the king crab parasite Briarosaccus (Cirripedia: Rhizocephala) in the North Pacific. Zool J Linn Soc 2016; 176:3-14. [PMID: 26792948 PMCID: PMC4706646 DOI: 10.1111/zoj.12304] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 06/01/2015] [Accepted: 06/10/2015] [Indexed: 12/04/2022]
Abstract
Rhizocephalan barnacles have been reported to parasitize a wide range of king crab species (Lithodidae). So far all these parasites have been assigned to a single species, Briarosaccus callosus Boschma, 1930, which is assumed to have a global distribution. Here we investigate Briarosaccus specimens from three different king crab hosts from the fjord systems of Southeastern Alaska: Lithodes aequispinus Benedict, 1895, Paralithodes camtschaticus (Tilesius, 1815), and Paralithodes platypus (Brandt, 1850). Using molecular markers and by morphological comparison we show that Briarosaccus specimens from these three commercial exploited king crabs are in fact morphologically distinct from B. callosus, and further represent two separate species which we describe. The two new species, Briarosaccus auratum n. sp. and B. regalis n. sp., are cryptic by morphological means and were identified as distinct species by the use of genetic markers (COI and 16S). They occur sympatrically, yet no overlap in king crab hosts occurs, with B. auratum n. sp. only found on L. aequispinus, and B. regalis n. sp. as parasite of the two Paralithodes hosts.
Collapse
Affiliation(s)
- Christoph Noever
- Marine Biodiversity Group, Department of Biology, University of Bergen Bergen, Norway
| | - Andrew Olson
- Alaska Department of Fish and Game Juneau, AK, USA
| | - Henrik Glenner
- Marine Biodiversity Group, Department of Biology, University of BergenBergen, Norway; CMEC, Natural History Museum, University of CopenhagenDenmark
| |
Collapse
|
10
|
|
11
|
O'Shaughnessy KA, Freshwater DW, Burge EJ. Prevalence of the invasive Rhizocephalan parasite Loxothylacus panopaei in Eurypanopeus depressus in South Carolina and genetic relationships of the parasite in North and South Carolina. J Parasitol 2014; 100:447-54. [PMID: 24588508 DOI: 10.1645/13-435.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The rhizocephalan barnacle Loxothylacus panopaei is a parasitic castrator of xanthid crabs that has invaded the U.S. Atlantic coast. It was transported to the Chesapeake Bay in the mid-1960s with mud crabs associated with Gulf coast oysters and has since spread north to Long Island Sound, New York, and south to Cape Canaveral, Florida. Here we report parasite prevalence at 3 South Carolina sites--2 from which the parasite had not been previously reported--and examine the genetic relationships of North and South Carolina L. panopaei populations relative to Gulf of Mexico and other Atlantic coast parasite populations. Total L. panopaei prevalence was 24.2% among all 3 sites, with monthly prevalence as high as 51.6% at Waties Island, South Carolina. Sequence analyses of North and South Carolina specimens revealed the presence of 4 cytochrome c oxidase subunit I haplotypes--3 commonly found in other invasive populations and 1 new haplotype found in a single specimen from the Rachel Carson Reserve in Carteret County, North Carolina--and indicate that the Carolina populations are a result of range expansion from the original Atlantic coast invasion.
Collapse
Affiliation(s)
- Kathryn A O'Shaughnessy
- Department of Marine Science, Coastal Carolina University, P.O. Box 261954, Conway, South Carolina 29528
| | | | | |
Collapse
|