1
|
Lee CC, Hsu HW, Lin CY, Gustafson N, Matsuura K, Lee CY, Yang CCS. First Polycipivirus and Unmapped RNA Virus Diversity in the Yellow Crazy Ant, Anoplolepis gracilipes. Viruses 2022; 14:v14102161. [PMID: 36298716 PMCID: PMC9612232 DOI: 10.3390/v14102161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/01/2022] Open
Abstract
The yellow crazy ant, Anoplolepis gracilipes is a widespread invasive ant that poses significant threats to local biodiversity. Yet, compared to other global invasive ant species such as the red imported fire ant (Solenopsis invicta) or the Argentine ant (Linepithema humile), little is known about the diversity of RNA viruses in the yellow crazy ant. In the current study, we generated a transcriptomic database for A. gracilipes using a high throughput sequencing approach to identify new RNA viruses and characterize their genomes. Four virus species assigned to Dicistroviridae, two to Iflaviridae, one to Polycipiviridae, and two unclassified Riboviria viruses were identified. Detailed genomic characterization was carried out on the polycipivirus and revealed that this virus comprises 11,644 nucleotides with six open reading frames. Phylogenetic analysis and pairwise amino acid identity comparison classified this virus into the genus Sopolycivirus under Polycipiviridae, which is tentatively named "Anoplolepis gracilipes virus 3 (AgrV-3)". Evolutionary analysis showed that AgrV-3 possesses a high level of genetic diversity and elevated mutation rate, combined with the common presence of multiple viral strains within single worker individuals, suggesting AgrV-3 likely evolves following the quasispecies model. A subsequent field survey placed the viral pathogen "hotspot" of A. gracilipes in the Southeast Asian region, a pattern consistent with the region being recognized as part of the ant's native range. Lastly, infection of multiple virus species seems prevalent across field colonies and may have been linked to the ant's social organization.
Collapse
Affiliation(s)
- Chih-Chi Lee
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Department of Evolutionary and Environmental Biology, Institute of Evolution, University of Haifa, Haifa 3498838, Israel
| | - Hung-Wei Hsu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chun-Yi Lin
- Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto 6110011, Japan
- Citrus Research and Education Center, University of Florida, Lake Alfred, FL 33850, USA
| | - Nicolas Gustafson
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Kenji Matsuura
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 6068502, Japan
| | - Chow-Yang Lee
- Department of Entomology, University of California, 900 University Avenue, Riverside, CA 92521, USA
| | - Chin-Cheng Scotty Yang
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Correspondence: ; Tel.: +1-540-231-3052
| |
Collapse
|
2
|
Gippet JM, Colin T, Grangier J, Winkler F, Haond M, Dumet A, Tragust S, Mondy N, Kaufmann B. Land-cover and climate factors contribute to the prevalence of the ectoparasitic fungus Laboulbenia formicarum in its invasive ant host Lasius neglectus. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
3
|
Feldhaar H, Otti O. Pollutants and Their Interaction with Diseases of Social Hymenoptera. INSECTS 2020; 11:insects11030153. [PMID: 32121502 PMCID: PMC7142568 DOI: 10.3390/insects11030153] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 02/18/2020] [Accepted: 02/24/2020] [Indexed: 12/07/2022]
Abstract
Many insect species, including social insects, are currently declining in abundance and diversity. Pollutants such as pesticides, heavy metals, or airborne fine particulate matter from agricultural and industrial sources are among the factors driving this decline. While these pollutants can have direct detrimental effects, they can also result in negative interactive effects when social insects are simultaneously exposed to multiple stressors. For example, sublethal effects of pollutants can increase the disease susceptibility of social insects, and thereby jeopardize their survival. Here we review how pesticides, heavy metals, or airborne fine particulate matter interact with social insect physiology and especially the insects’ immune system. We then give an overview of the current knowledge of the interactive effects of these pollutants with pathogens or parasites. While the effects of pesticide exposure on social insects and their interactions with pathogens have been relatively well studied, the effects of other pollutants, such as heavy metals in soil or fine particulate matter from combustion, vehicular transport, agriculture, and coal mining are still largely unknown. We therefore provide an overview of urgently needed knowledge in order to mitigate the decline of social insects.
Collapse
|
4
|
Abril S, Jurvansuu J. Season- and caste-specific variation in RNA viruses in the invasive Argentine ant European supercolony. J Gen Virol 2020; 101:322-333. [PMID: 31985392 DOI: 10.1099/jgv.0.001384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The Argentine ant (Linepithema humile, Mayr) is a highly invasive species. Recently, several RNA viruses have been identified in samples from invasive Argentine ant colonies. Using quantitative PCR, we investigated variation in the levels of these viruses in the main European supercolony over the course of a year. We discovered that virus prevalence and amounts of viral RNA were affected by season and caste: ants had more virus types during warm versus cold months, and queens had more virus types and higher virus prevalence than did workers or males. This seasonal variation was largely due to the appearance of positive-strand RNA viruses in the summer and their subsequent disappearance in the winter. The prevalences of positive-strand RNA viruses were positively correlated with worker foraging activity. We hypothesise that during warmer months, ants are more active and more numerous and, as a result, they have more conspecific and heterospecific interactions that promote virus transmission.
Collapse
Affiliation(s)
- Sílvia Abril
- Department of Environmental Sciences, University of Girona, Girona, Spain
| | - Jaana Jurvansuu
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
| |
Collapse
|
5
|
Hsu HW, Chiu MC, Lee CC, Lee CY, Yang CCS. The Association between Virus Prevalence and Intercolonial Aggression Levels in the Yellow Crazy Ant, Anoplolepis Gracilipes (Jerdon). INSECTS 2019; 10:insects10120436. [PMID: 31817209 PMCID: PMC6956197 DOI: 10.3390/insects10120436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 11/29/2019] [Accepted: 11/30/2019] [Indexed: 01/30/2023]
Abstract
The recent discovery of multiple viruses in ants, along with the widespread infection of their hosts across geographic ranges, provides an excellent opportunity to test whether viral prevalence in the field is associated with the complexity of social interactions in the ant population. In this study, we examined whether the association exists between the field prevalence of a virus and the intercolonial aggression of its ant host, using the yellow crazy ant (Anoplolepis gracilipes) and its natural viral pathogen (TR44839 virus) as a model system. We delimitated the colony boundary and composition of A. gracilipes in a total of 12 study sites in Japan (Okinawa), Taiwan, and Malaysia (Penang), through intercolonial aggression assay. The spatial distribution and prevalence level of the virus was then mapped for each site. The virus occurred at a high prevalence in the surveyed colonies of Okinawa and Taiwan (100% infection rate across all sites), whereas virus prevalence was variable (30%–100%) or none (0%) at the sites in Penang. Coincidentally, colonies in Okinawa and Taiwan displayed a weak intercolonial boundary, as aggression between colonies is generally low or moderate. Contrastingly, sites in Penang were found to harbor a high proportion of mutually aggressive colonies, a pattern potentially indicative of complex colony composition. Our statistical analyses further confirmed the observed correlation, implying that intercolonial interactions likely contribute as one of the effective facilitators of/barriers to virus prevalence in the field population of this ant species.
Collapse
Affiliation(s)
- Hung-Wei Hsu
- Laboratory of Insect Ecology, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan;
| | - Ming-Chung Chiu
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan;
| | - Ching-Chen Lee
- Center for Ecology and Environment, Department of Life Science, Tunghai University, Taichung 40704, Taiwan;
| | - Chow-Yang Lee
- Department of Entomology, University of California, Riverside, 900 University Avenue, Riverside, CA 92521, USA;
| | - Chin-Cheng Scotty Yang
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- Correspondence: ; Tel.: +81-70-4144-2823
| |
Collapse
|
6
|
Malagocka J, Eilenberg J, Jensen AB. Social immunity behaviour among ants infected by specialist and generalist fungi. CURRENT OPINION IN INSECT SCIENCE 2019; 33:99-104. [PMID: 31358203 DOI: 10.1016/j.cois.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 05/01/2019] [Indexed: 06/10/2023]
Abstract
Social insects are distinguished by their lifestyle of living in groups with division of labour, cooperative brood care, and reproduction limited to a few colony members. Social insects often build large colonies with remarkable densities of highly related individuals and this can lead to an increased pathogen pressure. Our review focuses on interactions of ants with two important taxonomic groups of fungi infecting ants: Hypocreales (Ascomycota) and Entomophthorales (Entomophthoromycotina), and their different infection strategies, including host manipulation for optimal spore dispersal in the specialised ant pathogens. In social insects such as ants, resistance to pathogens is present at the colony level, with social immunity in addition to the individual resistance. We describe how ants use both organizational and behavioural defence strategies to combat fungal pathogens, with emphasis on highly specialised fungi from the genera Ophiocordyceps and Pandora.
Collapse
Affiliation(s)
- Joanna Malagocka
- Centre for Social Evolution, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Jørgen Eilenberg
- Centre for Social Evolution, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| | - Annette Bruun Jensen
- Centre for Social Evolution, Department of Plant and Environmental Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark
| |
Collapse
|
7
|
Okabe K, Masuya H, Kanzaki N. Unintentional introductions of microscopic organisms associated with forest insects. Biol Invasions 2017. [DOI: 10.1007/s10530-017-1507-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
|
9
|
Markó B, Csata E, Erős K, Német E, Czekes Z, Rózsa L. Distribution of the myrmecoparasitic fungus Rickia wasmannii (Ascomycota: Laboulbeniales) across colonies, individuals, and body parts of Myrmica scabrinodis. J Invertebr Pathol 2016; 136:74-80. [PMID: 26970261 DOI: 10.1016/j.jip.2016.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/07/2015] [Accepted: 03/09/2016] [Indexed: 12/25/2022]
Abstract
The ant species Myrmica scabrinodis plays a markedly important ecological role through much of the humid grasslands of Eurasia. It hosts a species-rich community of pathogens and parasites, including Rickia wasmannii, an enigmatic member of entomoparasitic laboulbenialean fungi. This study provides a descriptive ecology of R. wasmannii by characterizing its prevalence and distribution across several hierarchical levels: colonies, individuals, and anatomic body parts. Infections were restricted to a single ant species, M. scabrinodis, and infected colonies occurred predominantly in wet habitats. Infections tended to be highly prevalent within infected colonies, often reaching 100% sample prevalence among workers. Individual infections exhibited an aggregated distribution typical to host-parasite systems. Workers from the aboveground part of nests (presumably older ones acting as foragers) were more infected than those from the belowground part. Fungal thalli could be found all over the body of the hosts, the head and the abdomen being the most infected parts of the body. The fungi's distribution among host body parts statistically differed between low versus high-intensity infections: the initial dominance of the head decreased with advancing infection. These findings may provide baseline data for future comparative or monitoring studies.
Collapse
Affiliation(s)
- Bálint Markó
- Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania; Department of Ecology, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Enikő Csata
- Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania.
| | - Katalin Erős
- Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania.
| | - Enikő Német
- Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Zsolt Czekes
- Hungarian Department of Biology and Ecology, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Lajos Rózsa
- MTA-ELTE-MTM Ecology Research Group, Pázmány s. 1/C, H-1117 Budapest, Hungary
| |
Collapse
|