1
|
Ali S, Wright AH, Tanney JB, Renaud JB, Sumarah MW. Fungal Endophytes: Discovering What Lies within Some of Canada's Oldest and Most Resilient Grapevines. J Fungi (Basel) 2024; 10:105. [PMID: 38392777 PMCID: PMC10890244 DOI: 10.3390/jof10020105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/10/2024] [Accepted: 01/17/2024] [Indexed: 02/24/2024] Open
Abstract
Plant diseases and pests reduce crop yields, accounting for global crop losses of 30% to 50%. In conventional agricultural production systems, these losses are typically controlled by applying chemical pesticides. However, public pressure is mounting to curtail agrochemical use. In this context, employing beneficial endophytic microorganisms is an increasingly attractive alternative to the use of conventional chemical pesticides in agriculture. A multitude of fungal endophytes are naturally present in plants, producing enzymes, small peptides, and secondary metabolites due to their bioactivity, which can protect hosts from pathogens, pests, and abiotic stresses. The use of beneficial endophytic microorganisms in agriculture is an increasingly attractive alternative to conventional pesticides. The aim of this study was to characterize fungal endophytes isolated from apparently healthy, feral wine grapes in eastern Canada that have grown without agrochemical inputs for decades. Host plants ranged from unknown seedlings to long-lost cultivars not widely propagated since the 1800s. HPLC-MS was used to identify unique endophyte-derived chemical compounds in the host plants, while dual-culture competition assays showed a range in endophytes' ability to suppress the mycelial growth of Botrytis, which is typically controlled in viticulture with pesticides. Twelve of the most promising fungal endophytes isolated were identified using multilocus sequencing and morphology, while DNA barcoding was employed to identify some of their host vines. These fungal endophyte isolates, which consisted of both known and putative novel strains, belonged to seven genera in six families and five orders of Ascomycota. Exploring the fungal endophytes in these specimens may yield clues to the vines' survival and lead to the discovery of novel biocontrol agents.
Collapse
Affiliation(s)
- Shawkat Ali
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - A Harrison Wright
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main St., Kentville, NS B4N 1J5, Canada
| | - Joey B Tanney
- Natural Resources Canada, Pacific Forestry Centre, 506 Burnside Road West, Victoria, BC V8Z 1M5, Canada
| | - Justin B Renaud
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| | - Mark W Sumarah
- Agriculture and Agri-Food Canada, London Research and Development Centre, 1391 Sandford St., London, ON N5V 4T3, Canada
| |
Collapse
|
2
|
Abstract
Pathogenic fungal infections in plants may, in some cases, lead to downstream systematic impacts on the plant metabolome and microbiome that may either alleviate or exacerbate the effects of the fungal pathogen. While Sphaerulina musiva is a well-characterized fungal pathogen which infects Populus tree species, an important wood fiber and biofuel feedstock, little is known about its systematic effects on the metabolome and microbiome of Populus. Here, we investigated the metabolome of Populus trichocarpa and Populus deltoides leaves and roots and the microbiome of the leaf and root endospheres, phylloplane, and rhizosphere to understand the systematic impacts of S. musiva abundance and infection on Populus species in a common garden field setting. We found that S. musiva is indeed present in both P. deltoides and P. trichocarpa, but S. musiva abundance was not statistically related to stem canker onset. We also found that the leaf and root metabolomes significantly differ between the two Populus species and that certain leaf metabolites, particularly the phenolic glycosides salirepin and salireposide, are diminished in canker-infected P. trichocarpa trees compared to their uninfected counterparts. Furthermore, we found significant associations between the metabolome, S. musiva abundance, and microbiome composition and α-diversity, particularly in P. trichocarpa leaves. Our results show that S. musiva colonizes both resistant and susceptible hosts and that the effects of S. musiva on susceptible trees are not confined to the site of canker infection. IMPORTANCE Poplar (Populus spp.) trees are ecologically and economically important trees throughout North America. However, many western North American poplar plantations are at risk due to the introduction of the nonnative fungal pathogen Sphaerulina musiva, which causes leaf spot and cankers, limiting their production. To better understand the interactions among the pathogen S. musiva, the poplar metabolome, and the poplar microbiome, we collected leaf, root, and rhizosphere samples from poplar trees consisting of 10 genotypes and two species with differential resistance to S. musiva in a common garden experiment. Here, we outline the nuanced relationships between the poplar metabolome, microbiome, and S. musiva, showing that S. musiva may affect poplar trees in tissues distal to the site of infection (i.e., stem). Our research contributes to improving the fundamental understanding of S. musiva and Populus sp. ecology and the utility of a holobiont approach in understanding plant disease.
Collapse
|
3
|
Capron A, Feau N, Heinzelmann R, Barnes I, Benowicz A, Bradshaw RE, Dale A, Lewis KJ, Owen TJ, Reich R, Ramsfield TD, Woods AJ, Hamelin RC. Signatures of Post-Glacial Genetic Isolation and Human-Driven Migration in the Dothistroma Needle Blight Pathogen in Western Canada. PHYTOPATHOLOGY 2021; 111:116-127. [PMID: 33112215 DOI: 10.1094/phyto-08-20-0350-fi] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Many current tree improvement programs are incorporating assisted gene flow strategies to match reforestation efforts with future climates. This is the case for the lodgepole pine (Pinus contorta var. latifolia), the most extensively planted tree in western Canada. Knowledge of the structure and origin of pathogen populations associated with this tree would help improve the breeding effort. Recent outbreaks of the Dothistroma needle blight (DNB) pathogen Dothistroma septosporum on lodgepole pine in British Columbia and its discovery in Alberta plantations raised questions about the diversity and population structure of this pathogen in western Canada. Using genotyping-by-sequencing on 119 D. septosporum isolates from 16 natural pine populations and plantations from this area, we identified four genetic lineages, all distinct from the other DNB lineages from outside of North America. Modeling of the population history indicated that these lineages diverged between 31.4 and 7.2 thousand years ago, coinciding with the last glacial maximum and the postglacial recolonization of lodgepole pine in western North America. The lineage found in the Kispiox Valley from British Columbia, where an unprecedented DNB epidemic occurred in the 1990s, was close to demographic equilibrium and displayed a high level of haplotypic diversity. Two lineages found in Alberta and Prince George (British Columbia) showed departure from random mating and contemporary gene flow, likely resulting from pine breeding activities and material exchanges in these areas. The increased movement of planting material could have some major consequences by facilitating secondary contact between genetically isolated DNB lineages, possibly resulting in new epidemics.
Collapse
Affiliation(s)
- Arnaud Capron
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Nicolas Feau
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Renate Heinzelmann
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Irene Barnes
- Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria 0002, South Africa
| | - Andy Benowicz
- Alberta Agriculture and Forestry, 9920-108 Street, Edmonton, AB, T5K 2M4, Canada
| | - Rosie E Bradshaw
- School of Fundamental Sciences, Massey University, Palmerston North, 4410, New Zealand
| | - Angela Dale
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- SC-New Construction Materials, FPInnovations, Vancouver, BC, V6T 1Z4, Canada
| | - Kathy J Lewis
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Timothy J Owen
- Ecosystem Science and Management Program, University of Northern British Columbia, Prince George, BC, V2N 4Z9, Canada
| | - Richard Reich
- Natural Resources and Forest Technology, College of New Caledonia, Prince George, BC, V2N 1P8, Canada
| | - Tod D Ramsfield
- Natural Resources Canada, Canadian Forest Service, 5320 - 122 St., Edmonton, AB, T6H 3S5, Canada
| | - Alex J Woods
- BC Ministry of Forests Lands and Natural Resource Operations and Rural Development, Skeena Region, Smithers, BC, V0J 2N0, Canada
| | - Richard C Hamelin
- Department of Forest and Conservation Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- Faculté de foresterie et géomatique, Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, G1V0A6, Canada
| |
Collapse
|
4
|
In Situ Processing and Efficient Environmental Detection (iSPEED) of tree pests and pathogens using point-of-use real-time PCR. PLoS One 2020; 15:e0226863. [PMID: 32240194 PMCID: PMC7117680 DOI: 10.1371/journal.pone.0226863] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 03/16/2020] [Indexed: 11/29/2022] Open
Abstract
Global trade and climate change are responsible for a surge in foreign invasive species and emerging pests and pathogens across the world. Early detection and surveillance activities are essential to monitor the environment and prevent or mitigate future ecosystem impacts. Molecular diagnostics by DNA testing has become an integral part of this process. However, for environmental applications, there is a need for cost-effective and efficient point-of-use DNA testing to obtain accurate results from remote sites in real-time. This requires the development of simple and fast sample processing and DNA extraction, room-temperature stable reagents and a portable instrument. We developed a point-of-use real-time Polymerase Chain Reaction system using a crude buffer-based DNA extraction protocol and lyophilized, pre-made, reactions for on-site applications. We demonstrate the use of this approach with pathogens and pests covering a broad spectrum of known undesirable forest enemies: the fungi Sphaerulina musiva, Cronartium ribicola and Cronartium comandrae, the oomycete Phytophthora ramorum and the insect Lymantria dispar. We obtained positive DNA identification from a variety of different tissues, including infected leaves, pathogen spores, or insect legs and antenna. The assays were accurate and yielded no false positive nor negative. The shelf-life of the lyophilized reactions was confirmed after one year at room temperature. Finally, successful tests conducted with portable thermocyclers and disposable instruments demonstrate the suitability of the method, named in Situ Processing and Efficient Environmental Detection (iSPEED), for field testing. This kit fits in a backpack and can be carried to remote locations for accurate and rapid detection of pests and pathogens.
Collapse
|
5
|
Tabima JF, Søndreli KL, Keriö S, Feau N, Sakalidis ML, Hamelin RC, LeBoldus JM. Population Genomic Analyses Reveal Connectivity via Human-Mediated Transport across Populus Plantations in North America and an Undescribed Subpopulation of Sphaerulina musiva. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:189-199. [PMID: 31593527 DOI: 10.1094/mpmi-05-19-0131-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Domestication of plant species has affected the evolutionary dynamics of plant pathogens in agriculture and forestry. A model system for studying the consequences of plant domestication on the evolution of an emergent plant disease is the fungal pathogen Sphaerulina musiva. This ascomycete causes leaf spot and stem canker disease of Populus spp. and their hybrids. A population genomics approach was used to determine the degree of population structure and evidence for selection on the North American population of S. musiva. In total, 122 samples of the fungus were genotyped identifying 120,016 single-nucleotide polymorphisms after quality filtering. In North America, S. musiva has low to moderate degrees of differentiation among locations. Three main genetic clusters were detected: southeastern United States, midwestern United States and Canada, and a new British Columbia cluster (BC2). Population genomics suggest that BC2 is a novel genetic cluster from central British Columbia, clearly differentiated from previously reported S. musiva from coastal British Columbia, and the product of a single migration event. Phenotypic measurements from greenhouse experiments indicate lower aggressiveness of BC2 on Populus trichocarpa. In summary, S. musiva has geographic structure across broad regions indicative of gene flow among clusters. The interconnectedness of the North American S. musiva populations across large geographic distances further supports the hypothesis of anthropogenic-facilitated transport of the pathogen.
Collapse
Affiliation(s)
- J F Tabima
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - K L Søndreli
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - S Keriö
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
| | - N Feau
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Canada
| | - M L Sakalidis
- Department of Plant, Soil and Microbial Sciences and the Department of Forestry, College of Agriculture & Natural Resources, Michigan State University, East Lansing, U.S.A
| | - R C Hamelin
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Canada
| | - J M LeBoldus
- Department of Botany and Plant Pathology, College of Agricultural Sciences, Oregon State University, Corvallis, U.S.A
- Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University
| |
Collapse
|
6
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|
7
|
Jeger M, Bragard C, Caffier D, Candresse T, Chatzivassiliou E, Dehnen-Schmutz K, Gilioli G, Grégoire JC, Jaques Miret JA, MacLeod A, Navarro MN, Niere B, Parnell S, Potting R, Rafoss T, Rossi V, Urek G, Van Bruggen A, Van der Werf W, West J, Winter S, Boberg J, Gonthier P, Pautasso M. Pest categorisation of Sphaerulina musiva. EFSA J 2018; 16:e05247. [PMID: 32625879 PMCID: PMC7009452 DOI: 10.2903/j.efsa.2018.5247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Following a request from the European Commission, the EFSA Plant Health Panel performed a pest categorisation of Sphaerulina musiva, a well-defined and distinguishable fungal species of the family Mycosphaerellaceae. Following a recent phylogenetic analysis of the genus Septoria and other closely related genera, a new name (S. musiva) was introduced for the species. The former species name Mycosphaerella populorum is used in the Council Directive 2000/29/EC. The pathogen is regulated in Annex IAI as a harmful organism whose introduction into the EU is banned. S. musiva is reported from North and South America and not known to occur in the EU. S. musiva causes Septoria leaf spots and cankers of poplar (Populus spp.). Of the poplars native to Europe, Populus nigra is reported as susceptible and Populus tremula as susceptible when planted in North America. The hybrid Populus x canadensis (arising from a cross of P. nigra and the North American Populus deltoides), widely grown in the EU, is also susceptible. The pest could enter the EU on plants for planting, cut branches, isolated bark and wood with and without bark. S. musiva could establish in the EU, as hosts are common and favourable climatic conditions are widespread, and could spread following establishment by natural dispersal and movement of infected plants for planting, cut branches, isolated bark and wood with or without bark. The pest introduction would have impacts in woodlands, plantations and nurseries. The pathogen is considered the most serious disease affecting hybrid poplar production in North America. Selection, breeding and planting of resistant species and clones are the main methods used to control the damage caused by the pathogen. There is some uncertainty on the geographical distribution of the pest in the Caucasus, the Crimean Peninsula and South America and on the level of susceptibility among Populus species native to Europe as well as Salix spp. The criteria assessed by the Panel for consideration as a potential quarantine pest are met. For regulated non-quarantine pests, the criterion on the pest presence in the EU is not met.
Collapse
|
8
|
Dunnell KL, LeBoldus JM. The Correlation Between Septoria Leaf Spot and Stem Canker Resistance in Hybrid Poplar. PLANT DISEASE 2017; 101:464-469. [PMID: 30677346 DOI: 10.1094/pdis-06-16-0903-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Sphaerulina musiva is an important fungal pathogen that causes a leaf spot and stem canker disease of hybrid poplar. Stem cankers are widely regarded as the greatest threat to hybrid poplar plantations because of their ability to cause tree mortality; thus, the efforts of breeding programs have been focused on stem canker resistance. To explore the relationship between resistance to leaf spot and stem canker in Populus nigra × P. deltoides hybrids, two experiments were conducted. Initially, comparisons among leaves of different ages indicated that younger leaves were more susceptible to leaf spot infection than older leaves. Correlations between leaf spot severity and stem canker severity for both individual leaves and all leaves averaged together indicated that, in 10 of 11 comparisons, there were no significant correlations. The lack of correlation suggests that deploying genotypes resistant to stem canker may not affect the pathogen population causing leaf spot disease. To our knowledge, this is the first study specifically designed to test the correlation between stem canker resistance and leaf spot resistance by inoculating whole trees with a spore suspension in a controlled environment.
Collapse
Affiliation(s)
- Kelsey L Dunnell
- Department of Botany and Plant Pathology, Oregon State University, Corvallis 97331 and Department of Plant Pathology, North Dakota State University, Fargo 58108
| | - Jared M LeBoldus
- Forest Engineering and Resources Management and Department of Botany and Plant Pathology, Oregon State University, and Department of Plant Pathology, North Dakota State University
| |
Collapse
|
9
|
|