1
|
Photiwatnangun M, Aowphol A, Saijuntha W, Lauprasert K. Mitochondrial DNA Sequences Variation of the Median-Striped Bullfrog Kaloula mediolineata Smith, 1917 (Amphibia: Microhylidae) in Thailand. Biochem Genet 2025:10.1007/s10528-025-11136-w. [PMID: 40382504 DOI: 10.1007/s10528-025-11136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 05/07/2025] [Indexed: 05/20/2025]
Abstract
In Thailand, the median-striped bullfrog, Kaloula mediolineata is a commercially important amphibian because it is a natural food source that is easily accessible in rural areas. However, there is currently a dearth of knowledge, especially on the population diversity of this species. This study, therefore, aims to evaluate the genetic variation of K. mediolineata in Thailand using the partial cytochrome b (Cyt-b) and 16S ribosomal RNA (16S rRNA) sequences. A total of 118 samples from 20 localities (Provinces) were collected. K. mediolineata has been classified into 52 and 31 haplotypes of Cyt-b haplotypes (Km1-Km52) and 16S rRNA haplotypes (Kr1-Kr31), respectively, which reflect high levels of genetic variation in this species. The 16S rRNA tree demonstrated a monophyletic group in our examined samples. Based on the Cyt-b sequence, the haplotype network and phylogenetic tree analyses showed that there are two separate genetic groups, which are named G1 and G2. These two divergent groups showed genetic differences with p-distance and FST values of 0.028 and 0.608 (p-value < 0.001), respectively. Genetic group G1 is strictly found in certain localities in the north, central, and east regions, whereas G2 is most widespread in this study. Two specimens showed high genetic differences from the others, which indicated that other cryptic genetic groups may exist. Thus, a comprehensive investigation of the biology, ecology, as well as genetic variation of K. mediolineata could be further conducted.
Collapse
Affiliation(s)
- Maneesila Photiwatnangun
- Department of Biology, Faculty of Science, Mahasarakham University, Khamrieng, 44150, Maha Sarakham, Thailand
| | - Anchalee Aowphol
- Animal Systematics and Ecology Speciality Research Unit, Department of Zoology, Faculty of Science, Kasetsart University, Bangkok, 10900, Thailand
- Biodiversity Center, Kasetsart University, Bangkok, 10900, Thailand
| | - Weerachai Saijuntha
- Faculty of Medicine, Mahasarakham University, Kantharawichai, 44000, Maha Sarakham, Thailand
- Biomedical Science Research Unit, and Center of Excellence in Biodiversity Research, Mahasarakham University, Kantharawichai, 44150, Maha Sarakham, Thailand
| | - Komsorn Lauprasert
- Department of Biology, Faculty of Science, Mahasarakham University, Khamrieng, 44150, Maha Sarakham, Thailand.
| |
Collapse
|
2
|
Berger L, Skerratt LF, Kosch TA, Brannelly LA, Webb RJ, Waddle AW. Advances in Managing Chytridiomycosis for Australian Frogs: Gradarius Firmus Victoria. Annu Rev Anim Biosci 2024; 12:113-133. [PMID: 38358840 DOI: 10.1146/annurev-animal-021122-100823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Extensive knowledge gains from research worldwide over the 25 years since the discovery of chytridiomycosis can be used for improved management. Strategies that have saved populations in the short term and/or enabled recovery include captive breeding, translocation into disease refugia, translocation from resistant populations, disease-free exclosures, and preservation of disease refuges with connectivity to previous habitat, while antifungal treatments have reduced mortality rates in the wild. Increasing host resistance is the goal of many strategies under development, including vaccination and targeted genetic interventions. Pathogen-directed strategies may be more challenging but would have broad applicability. While the search for the silver bullet solution continues, we should value targeted local interventions that stop extinction and buy time for evolution of resistance or development of novel solutions. As for most invasive species and infectious diseases, we need to accept that ongoing management is necessary. For species continuing to decline, proactive deployment and assessment of promising interventions are more valid than a hands-off, do-no-harm approach that will likely allow further extinctions.
Collapse
Affiliation(s)
- Lee Berger
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Lee F Skerratt
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Tiffany A Kosch
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Laura A Brannelly
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Rebecca J Webb
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
| | - Anthony W Waddle
- One Health Research Group, Melbourne Veterinary School, Faculty of Science, University of Melbourne, Werribee, Victoria, Australia; , , , ,
- Applied Biosciences, Macquarie University, Sydney, New South Wales, Australia;
| |
Collapse
|
3
|
Ottenburghs J. The genic view of hybridization in the Anthropocene. Evol Appl 2021; 14:2342-2360. [PMID: 34745330 PMCID: PMC8549621 DOI: 10.1111/eva.13223] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 03/10/2021] [Accepted: 03/10/2021] [Indexed: 12/24/2022] Open
Abstract
Human impact is noticeable around the globe, indicating that a new era might have begun: the Anthropocene. Continuing human activities, including land-use changes, introduction of non-native species and rapid climate change, are altering the distributions of countless species, often giving rise to human-mediated hybridization events. While the interbreeding of different populations or species can have detrimental effects, such as genetic extinction, it can be beneficial in terms of adaptive introgression or an increase in genetic diversity. In this paper, I first review the different mechanisms and outcomes of anthropogenic hybridization based on literature from the last five years (2016-2020). The most common mechanisms leading to the interbreeding of previously isolated taxa include habitat change (51% of the studies) and introduction of non-native species (34% intentional and 19% unintentional). These human-induced hybridization events most often result in introgression (80%). The high incidence of genetic exchange between the hybridizing taxa indicates that the application of a genic view of speciation (and introgression) can provide crucial insights on how to address hybridization events in the Anthropocene. This perspective considers the genome as a dynamic collection of genetic loci with distinct evolutionary histories, giving rise to a heterogenous genomic landscape in terms of genetic differentiation and introgression. First, understanding this genomic landscape can lead to a better selection of diagnostic genetic markers to characterize hybrid populations. Second, describing how introgression patterns vary across the genome can help to predict the likelihood of negative processes, such as demographic and genetic swamping, as well as positive outcomes, such as adaptive introgression. It is especially important to not only quantify how much genetic material introgressed, but also what has been exchanged. Third, comparing introgression patterns in pre-Anthropocene hybridization events with current human-induced cases might provide novel insights into the likelihood of genetic swamping or species collapse during an anthropogenic hybridization event. However, this comparative approach remains to be tested before it can be applied in practice. Finally, the genic view of introgression can be combined with conservation genomic studies to determine the legal status of hybrids and take appropriate measures to manage anthropogenic hybridization events. The interplay between evolutionary and conservation genomics will result in the constant exchange of ideas between these fields which will not only improve our knowledge on the origin of species, but also how to conserve and protect them.
Collapse
Affiliation(s)
- Jente Ottenburghs
- Wildlife Ecology and ConservationWageningen University & ResearchWageningenThe Netherlands
- Forest Ecology and Forest ManagementWageningen University & ResearchWageningenThe Netherlands
| |
Collapse
|
4
|
Waddle AW, Rivera R, Rice H, Keenan EC, Rezaei G, Levy JE, Vasquez YS, Sai M, Hill J, Zmuda A, Lambreghts Y, Jaeger JR. Amphibian resistance to chytridiomycosis increases following low‐virulence chytrid fungal infection or drug‐mediated clearance. J Appl Ecol 2021. [DOI: 10.1111/1365-2664.13974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Anthony W. Waddle
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
- One Health Research Group Faculty of Veterinary and Agricultural Sciences University of Melbourne Werribee Vic. Australia
| | - Rebeca Rivera
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Hannah Rice
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Emma C. Keenan
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Ghazal Rezaei
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Joshua E. Levy
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Yesenia S. Vasquez
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Marlai Sai
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Jessica Hill
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Alexandra Zmuda
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| | - Yorick Lambreghts
- School of Biological Sciences University of Tasmania Hobart TAS Australia
| | - Jef R. Jaeger
- School of Life Sciences University of Nevada, Las Vegas Las Vegas NV USA
| |
Collapse
|
5
|
Trujillo AL, Hoffman EA, Becker CG, Savage AE. Spatiotemporal adaptive evolution of an MHC immune gene in a frog-fungus disease system. Heredity (Edinb) 2021; 126:640-655. [PMID: 33510466 PMCID: PMC8115231 DOI: 10.1038/s41437-020-00402-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 12/29/2020] [Accepted: 12/31/2020] [Indexed: 01/30/2023] Open
Abstract
Genetic diversity of major histocompatibility complex (MHC) genes is linked to reduced pathogen susceptibility in amphibians, but few studies also examine broad spatial and temporal patterns of MHC and neutral genetic diversity. Here, we characterized range-wide MHC diversity in the Northern leopard frog, Rana pipiens, a species found throughout North America that is experiencing disease-related declines. We used previously sequenced neutral markers (mitochondrial DNA and microsatellites), sequenced an expressed MHC class IIß gene fragment, and measured infection prevalence and intensity of the global fungal pathogen Batrachochytrium dendrobatidis (Bd) across 14 populations. Four populations were sampled across two decades, enabling temporal comparisons of selection and demography. We recovered 37 unique MHC alleles, including 17 that were shared across populations. Phylogenetic and population genetic patterns between MHC and neutral markers were incongruent, and five MHC codon positions associated with peptide binding were under positive selection. MHC heterozygosity, but not neutral marker heterozygosity, was a significant factor explaining spatial patterns of Bd prevalence, whereas only environmental variables predicted Bd intensity. MHC allelic richness (AR) decreased significantly over time but microsatellite-based AR did not, highlighting a loss of functional immunogenetic diversity that may be associated with Bd selective pressures. MHC supertype 4 was significantly associated with an elevated risk of Bd infection, whereas one supertype 2 allele was associated with a nearly significant reduced risk of Bd. Taken together, these results provide evidence that positive selection contributes to MHC class IIß evolution in R. pipiens and suggest that functional MHC differences across populations may contribute to disease adaptation.
Collapse
Affiliation(s)
- Alexa L. Trujillo
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - Eric A. Hoffman
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| | - C. Guilherme Becker
- grid.411015.00000 0001 0727 7545Department of Biological Sciences, University of Alabama, Tuscaloosa, AL USA
| | - Anna E. Savage
- grid.170430.10000 0001 2159 2859Department of Biology, University of Central Florida, Orlando, FL USA
| |
Collapse
|
6
|
Pabijan M, Palomar G, Antunes B, Antoł W, Zieliński P, Babik W. Evolutionary principles guiding amphibian conservation. Evol Appl 2020; 13:857-878. [PMID: 32431739 PMCID: PMC7232768 DOI: 10.1111/eva.12940] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Accepted: 02/18/2020] [Indexed: 12/18/2022] Open
Abstract
The Anthropocene has witnessed catastrophic amphibian declines across the globe. A multitude of new, primarily human-induced drivers of decline may lead to extinction, but can also push species onto novel evolutionary trajectories. If these are recognized by amphibian biologists, they can be engaged in conservation actions. Here, we summarize how principles stemming from evolutionary concepts have been applied for conservation purposes, and address emerging ideas at the vanguard of amphibian conservation science. In particular, we examine the consequences of increased drift and inbreeding in small populations and their implications for practical conservation. We then review studies of connectivity between populations at the landscape level, which have emphasized the limiting influence of anthropogenic structures and degraded habitat on genetic cohesion. The rapid pace of environmental changes leads to the central question of whether amphibian populations can cope either by adapting to new conditions or by shifting their ranges. We gloomily conclude that extinction seems far more likely than adaptation or range shifts for most species. That said, conservation strategies employing evolutionary principles, such as selective breeding, introduction of adaptive variants through translocations, ecosystem interventions aimed at decreasing phenotype-environment mismatch, or genetic engineering, may effectively counter amphibian decline in some areas or for some species. The spread of invasive species and infectious diseases has often had disastrous consequences, but has also provided some premier examples of rapid evolution with conservation implications. Much can be done in terms of setting aside valuable amphibian habitat that should encompass both natural and agricultural areas, as well as designing protected areas to maximize the phylogenetic and functional diversity of the amphibian community. We conclude that an explicit consideration and application of evolutionary principles, although certainly not a silver bullet, should increase effectiveness of amphibian conservation in both the short and long term.
Collapse
Affiliation(s)
- Maciej Pabijan
- Institute of Zoology and Biomedical ResearchFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Gemma Palomar
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Bernardo Antunes
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Weronika Antoł
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Piotr Zieliński
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| | - Wiesław Babik
- Institute of Environmental SciencesFaculty of BiologyJagiellonian UniversityKrakówPoland
| |
Collapse
|