1
|
Kumar Pradhan S, Morrow JL, Sharpe SR, Karuppannasamy A, Ramasamy E, Bynakal S, Maligeppagol M, Ramasamy A, Riegler M. RNA virus diversity and prevalence in field and laboratory populations of melon fly throughout its distribution. J Invertebr Pathol 2024; 204:108117. [PMID: 38679365 DOI: 10.1016/j.jip.2024.108117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/17/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Insects have a rich diversity of RNA viruses that can either cause acute infections or persist in host populations without visible symptoms. The melon fly, Zeugodacus cucurbitae (Tephritidae) causes substantial economic losses through infestation of diverse cucurbit and other crops. Of Indomalayan origin, it is now established in many tropical regions of the world. The virome diversity of Z. cucurbitae is largely unknown across large parts of its distribution, including the Indian subcontinent. We have analysed three transcriptomes each of one field-collected and one laboratory-reared Z. cucurbitae population from Bangalore (India) and discovered genomes of ten putative RNA viruses: two sigmaviruses, one chimbavirus, one cripavirus, one noda-like virus, one nora virus, one orbivirus, one partiti-like virus, one sobemovirus and one toti-like virus. Analysis of the only available host genome of a Hawaiian Z. cucurbitae population did not detect host genome integration of the detected viruses. While all ten viruses were found in the Bangalore field population only seven were detected in the laboratory population, indicating that these seven may cause persistent covert infections. Using virus-specific RNA-dependent RNA polymerase gene primers, we detected nine of the RNA viruses with an overall low variant diversity in some but not all individual flies from four out of five Indian regions. We then screened 39 transcriptomes of Z. cucurbitae laboratory populations from eastern Asia (Guangdong, Hainan, Taiwan) and the Pacific region (Hawaii), and detected seven of the ten virus genomes. We found additional genomes of a picorna-like virus and a negev-like virus. Hawaii as the only tested population from the fly's invasive range only had one virus. Our study provides evidence of new and high RNA virus diversity in Indian populations within the original range of Z. cucurbitae, as well as the presence of persistent covert infections in laboratory populations. It builds the basis for future research of tephritid-associated RNA viruses, including their host effects, epidemiology and application potential in biological control.
Collapse
Affiliation(s)
- Sanjay Kumar Pradhan
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Jennifer L Morrow
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Stephen R Sharpe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| | - Ashok Karuppannasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India; Tata Institute for Genetics and Society, Bengaluru 560065, Karnataka, India.
| | - Ellango Ramasamy
- Computational and Mathematical Biology Centre (CMBC), THSTI- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121001, Haryana, India.
| | - Shivanna Bynakal
- Department of Agricultural Entomology, University of Agricultural Sciences, Bengaluru 560065, Karnataka, India.
| | - Manamohan Maligeppagol
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Asokan Ramasamy
- ICAR- Indian Institute of Horticultural Research, Hesaraghatta Lake, Bengaluru 560089, Karnataka, India.
| | - Markus Riegler
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia.
| |
Collapse
|
2
|
McCulloch GA, Waters JM. Rapid adaptation in a fast-changing world: Emerging insights from insect genomics. GLOBAL CHANGE BIOLOGY 2023; 29:943-954. [PMID: 36333958 PMCID: PMC10100130 DOI: 10.1111/gcb.16512] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/07/2022] [Indexed: 05/31/2023]
Abstract
Many researchers have questioned the ability of biota to adapt to rapid anthropogenic environmental shifts. Here, we synthesize emerging genomic evidence for rapid insect evolution in response to human pressure. These new data reveal diverse genomic mechanisms (single locus, polygenic, structural shifts; introgression) underpinning rapid adaptive responses to a variety of anthropogenic selective pressures. While the effects of some human impacts (e.g. pollution; pesticides) have been previously documented, here we highlight startling new evidence for rapid evolutionary responses to additional anthropogenic processes such as deforestation. These recent findings indicate that diverse insect assemblages can indeed respond dynamically to major anthropogenic evolutionary challenges. Our synthesis also emphasizes the critical roles of genomic architecture, standing variation and gene flow in maintaining future adaptive potential. Broadly, it is clear that genomic approaches are essential for predicting, monitoring and responding to ongoing anthropogenic biodiversity shifts in a fast-changing world.
Collapse
|
3
|
Aguirre-Ramirez E, Velasco-Cuervo S, Toro-Perea N. Genomic Traces of the Fruit Fly Anastrepha obliqua Associated with Its Polyphagous Nature. INSECTS 2021; 12:1116. [PMID: 34940204 PMCID: PMC8704581 DOI: 10.3390/insects12121116] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/24/2021] [Accepted: 11/27/2021] [Indexed: 12/23/2022]
Abstract
Anastrepha obliqua (Macquart) (Diptera: Tephritidae) is an important pest in the neotropical region. It is considered a polyphagous insect, meaning it infests plants of different taxonomic families and readily colonizes new host plants. The change to new hosts can lead to diversification and the formation of host races. Previous studies investigating the effect of host plants on population structure and selection in Anastrepha obliqua have focused on the use of data from the mitochondrial DNA sequence and microsatellite markers of nuclear DNA, and there are no analyses at the genomic level. To better understand this issue, we used a pooled restriction site-associated DNA sequencing (pooled RAD-seq) approach to assess genomic differentiation and population structure across sympatric populations of Anastrepha obliqua that infest three host plants-Spondias purpurea (red mombin), Mangifera indica (mango) of the family Anacardiaceae and Averrhoa carambola (carambola) of the family Oxalidaceae-in sympatric populations of the species Anastrepha obliqua of Inter-Andean Valley of the Cauca River in southwestern Colombia. Our results show genomic differentiation of populations from carambola compared to mango and red mombin populations, but the genetic structure was mainly established by geography rather than by the host plant. On the other hand, we identified 54 SNPs in 23 sequences significantly associated with the use of the host plant. Of these 23 sequences, we identified 17 candidate genes and nine protein families, of which four protein families are involved in the nutrition of these flies. Future studies should investigate the adaptive processes undergone by phytophagous insects in the Neotropics, using fruit flies as a model and state-of-the-art molecular tools.
Collapse
Affiliation(s)
- Elkin Aguirre-Ramirez
- Grupo de Estudios Ecogenéticos y Biología Molecular, Departamento de Biología, Universidad del Valle, Cali 760032, Colombia; (S.V.-C.); (N.T.-P.)
| | | | | |
Collapse
|
4
|
San Juan E, Araya-Donoso R, Véliz D, Quiroga N, Botto-Mahan C. Genetic diversity in a restricted-dispersal kissing bug: The centre-periphery hypothesis halfway. Mol Ecol 2021; 30:4660-4672. [PMID: 34309098 DOI: 10.1111/mec.16093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/04/2021] [Accepted: 07/19/2021] [Indexed: 11/29/2022]
Abstract
The centre-periphery hypothesis (CPH) postulates that populations close to the centre of a species distribution will exhibit higher genetic diversity and lower genetic differentiation than populations located at the edge of the distribution. The centre of a species' distribution might represent an optimum for the environmental factors influencing the species absolute fitness and, therefore, genetic diversity. In species with wide distribution, the geographical variation of biotic and abiotic variables is crucial to understand the underlying mechanisms of the CPH. We evaluated the CPH and specifically tested which environmental variables better explained the patterns of genetic diversity in the kissing bug Mepraia spinolai, one of the main wild vectors of Chagas disease in southern South America, distributed across three Mediterranean climatic ecoregions in Chile. We analysed 2380 neutral single nucleotide polymorphisms to estimate genetic diversity. Mean winter temperature, mean summer temperature, vegetation cover, population abundance, proportion of winged individuals and female abdomen area were measured for each kissing bug population to construct a model. Lower genetic diversity was detected in populations at the edge of the distribution compared to those in the centre. However, genetic differentiation was not higher in the periphery. Genetic diversity was related to climatic and biological variables; there was a positive relationship with mean winter temperature and a negative association with mean summer temperature and body size. These results partially support the CPH and identify biotic (abdomen area) and abiotic (winter/summer temperatures) factors that would affect genetic diversity in this restricted-dispersal species of epidemiological relevance.
Collapse
Affiliation(s)
| | | | - David Véliz
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile.,Núcleo Milenio de Ecología y Manejo Sustentable de Islas Oceánicas (ESMOI), Departamento de Biología Marina, Universidad Católica del Norte, Coquimbo, Chile
| | - Nicol Quiroga
- Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | | |
Collapse
|
5
|
Popa-Báez ÁD, Lee SF, Yeap HL, Westmore G, Crisp P, Li D, Catullo R, Cameron EC, Edwards OR, Taylor PW, Oakeshott JG. Tracing the origins of recent Queensland fruit fly incursions into South Australia, Tasmania and New Zealand. Biol Invasions 2021. [DOI: 10.1007/s10530-020-02422-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Global incursion pathways of Thaumastocoris peregrinus, an invasive Australian pest of eucalypts. Biol Invasions 2020. [DOI: 10.1007/s10530-020-02337-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
7
|
|
8
|
Highly variable COI haplotype diversity between three species of invasive pest fruit fly reflects remarkably incongruent demographic histories. Sci Rep 2020; 10:6887. [PMID: 32327680 PMCID: PMC7181599 DOI: 10.1038/s41598-020-63973-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 04/07/2020] [Indexed: 11/09/2022] Open
Abstract
Distance decay principles predict that species with larger geographic ranges would have greater intraspecific genetic diversity than more restricted species. However, invasive pest species may not follow this prediction, with confounding implications for tracking phenomena including original ranges, invasion pathways and source populations. We sequenced an 815 base-pair section of the COI gene for 441 specimens of Bactrocera correcta, 214 B. zonata and 372 Zeugodacus cucurbitae; three invasive pest fruit fly species with overlapping hostplants. For each species, we explored how many individuals would need to be included in a study to sample the majority of their haplotype diversity. We also tested for phylogeographic signal and used demographic estimators as a proxy for invasion potency. We find contrasting patterns of haplotype diversity amongst the species, where B. zonata has the highest diversity but most haplotypes were represented by singletons; B. correcta has ~7 dominant haplotypes more evenly distributed; Z. cucurbitae has a single dominant haplotype with closely related singletons in a 'star-shape' surrounding it. We discuss how these differing patterns relate to their invasion histories. None of the species showed meaningful phylogeographic patterns, possibly due to gene-flow between areas across their distributions, obscuring or eliminating substructure.
Collapse
|
9
|
Hamelin RC, Roe AD. Genomic biosurveillance of forest invasive alien enemies: A story written in code. Evol Appl 2020; 13:95-115. [PMID: 31892946 PMCID: PMC6935587 DOI: 10.1111/eva.12853] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 06/30/2019] [Accepted: 07/19/2019] [Indexed: 12/15/2022] Open
Abstract
The world's forests face unprecedented threats from invasive insects and pathogens that can cause large irreversible damage to the ecosystems. This threatens the world's capacity to provide long-term fiber supply and ecosystem services that range from carbon storage, nutrient cycling, and water and air purification, to soil preservation and maintenance of wildlife habitat. Reducing the threat of forest invasive alien species requires vigilant biosurveillance, the process of gathering, integrating, interpreting, and communicating essential information about pest and pathogen threats to achieve early detection and warning and to enable better decision-making. This process is challenging due to the diversity of invasive pests and pathogens that need to be identified, the diverse pathways of introduction, and the difficulty in assessing the risk of establishment. Genomics can provide powerful new solutions to biosurveillance. The process of invasion is a story written in four chapters: transport, introduction, establishment, and spread. The series of processes that lead to a successful invasion can leave behind a DNA signature that tells the story of an invasion. This signature can help us understand the dynamic, multistep process of invasion and inform management of current and future introductions. This review describes current and future application of genomic tools and pipelines that will provide accurate identification of pests and pathogens, assign outbreak or survey samples to putative sources to identify pathways of spread, and assess risk based on traits that impact the outbreak outcome.
Collapse
Affiliation(s)
- Richard C. Hamelin
- Department of Forest and Conservation SciencesThe University of British ColumbiaVancouverBCCanada
- Institut de Biologie Intégrative et des Systèmes (IBIS)Université LavalQuébecQCCanada
- Département des sciences du bois et de la forêt, Faculté de Foresterie et GéographieUniversité LavalQuébecQCCanada
| | - Amanda D. Roe
- Great Lakes Forestry CenterNatural Resources CanadaSault Ste. MarieONCanada
| |
Collapse
|
10
|
Delatte H, De Meyer M, Virgilio M. Genetic structure and range expansion of Zeugodacus Cucurbitae (Diptera: Tephritidae) in Africa. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:713-722. [PMID: 30724141 DOI: 10.1017/s0007485319000026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Hypotheses about the worldwide colonization routes of the melon fly, Zeugodacus cucurbitae (Diptera: Tephritidae), are mainly based on sparse historical records. Here we aim at reconstructing the colonization history of the African continent based on an improved description of the population structure of Z. cucurbitae and approximate Bayesian analyses. Individuals of Z. cucurbitae were sampled in 17 localities from East, West and Central Africa and genotyped at 19 microsatellite markers. Bayesian analyses showed intracontinental population structuring with populations from Uganda diverging from those of Tanzania and populations from Burundi and Kenya showing traces of admixture with West African samples. Approximate Bayesian Computation provided support to the hypothesis of a single introduction Z. cucurbitae into East Africa and subsequent expansion to West Africa, each colonization event was followed by a bottleneck that promoted population divergence within Africa. Parameter estimates suggested that these events are roughly compatible with the historical records of Z. cucurbitae presence in sub-Saharan Africa (viz. 1936 in East Africa and 1999 in West Africa) and allow excluding alternative hypotheses on older or multiple introductions of Z. cucurbitae.
Collapse
Affiliation(s)
- H Delatte
- CIRAD, UMR PVBMT, F-97410 Saint-Pierre, Réunion, France
| | - M De Meyer
- Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| | - M Virgilio
- Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium
| |
Collapse
|
11
|
Zhang YM, Vitone TR, Storer CG, Payton AC, Dunn RR, Hulcr J, McDaniel SF, Lucky A. From Pavement to Population Genomics: Characterizing a Long-Established Non-native Ant in North America Through Citizen Science and ddRADseq. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00453] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
12
|
Kunprom C, Pramual P. Population genetics of the solanum fruit fly, Bactrocera latifrons (Hendel) (Diptera: Tephritidae). Genome 2019; 62:739-747. [PMID: 31491341 DOI: 10.1139/gen-2019-0122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The solanum fruit fly, Bactrocera latifrons (Hendel), is an important pest species of commercial plants in the family Solanaceae. In this study, the population genetic structure of B. latifrons was investigated using mitochondrial cytochrome c oxidase I sequences. A mitochondrial DNA haplotype network revealed no major genetic break, but haplotypes from recently invaded areas in Japan, Tanzania, and Kenya were genetically divergent. The overall haplotype network is approximately star-shaped, characteristic of recent demographic expansion of populations. This is also supported by large negative values of neutrality tests. Despite the overall pattern of recent population history, genetic structure analysis revealed considerable genetic structuring with 33% of pairwise comparisons being significantly different. Populations that were genetically different from the others usually possess low genetic diversity, suggesting that genetic drift is potentially a factor driving genetic differentiation. Local extinction and recolonization processes related to the availability of host plants are most likely responsible for a founder effect and subsequent genetic drift in a population.
Collapse
Affiliation(s)
- Chonticha Kunprom
- Department of Biology, Faculty of Science, Mahasarkham University, Kantharawichai District, Maha Sarakham, 44150 Thailand.,Department of Biology, Faculty of Science, Mahasarkham University, Kantharawichai District, Maha Sarakham, 44150 Thailand
| | - Pairot Pramual
- Department of Biology, Faculty of Science, Mahasarkham University, Kantharawichai District, Maha Sarakham, 44150 Thailand.,Department of Biology, Faculty of Science, Mahasarkham University, Kantharawichai District, Maha Sarakham, 44150 Thailand
| |
Collapse
|
13
|
Dupuis JR, Ruiz‐Arce R, Barr NB, Thomas DB, Geib SM. Range-wide population genomics of the Mexican fruit fly: Toward development of pathway analysis tools. Evol Appl 2019; 12:1641-1660. [PMID: 31462920 PMCID: PMC6708432 DOI: 10.1111/eva.12824] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 11/30/2022] Open
Abstract
Recurrently invading pests provide unique challenges for pest management, but also present opportunities to utilize genomics to understand invasion dynamics and inform regulatory management through pathway analysis. In the southern United States, the Mexican fruit fly Anastrepha ludens is such a pest, and its incursions into Texas and California represent major threats to the agricultural systems of those regions. We developed a draft genome assembly for A. ludens, conducted range-wide population genomics using restriction site-associated DNA sequencing, and then developed and demonstrated a panel of highly differentiated diagnostic SNPs for source determination of intercepted flies in this system. Using 2,081 genomewide SNPs, we identified four populations across the range of A. ludens, corresponding to western Mexico, eastern Mexico/Texas, Guatemala/Belize/Honduras, and Costa Rica/Panama, with some intergradation present between clusters, particularly in Central America. From this population genomics framework, we developed a diagnostic panel of 28 highly differentiated SNPs that were able to recreate the genomewide population structure in this species. We demonstrated this panel on a set of test specimens, including specimens intercepted as part of regular trapping surveillance in Texas and California, and we were able to predict populations of origin for these specimens. This methodology presents a highly applied use of genomic techniques and can be implemented in any group of recurrently invading pests.
Collapse
Affiliation(s)
- Julian R. Dupuis
- U.S. Department of Agriculture‐Agricultural Research ServiceDaniel K. Inouye U.S. Pacific Basin Agricultural Research CenterHiloHawaii
- Department of Plant and Environmental Protection SciencesUniversity of Hawai’i at MānoaHonoluluHawaii
| | - Raul Ruiz‐Arce
- U.S. Department of Agriculture‐Animal and Plant Health Inspection Service, Plant Protection & Quarantine, Science and TechnologyMission LaboratoryEdinburgTexas
| | - Norman B. Barr
- U.S. Department of Agriculture‐Animal and Plant Health Inspection Service, Plant Protection & Quarantine, Science and TechnologyMission LaboratoryEdinburgTexas
| | - Donald B. Thomas
- U.S. Department of Agriculture‐Agricultural Research ServiceCattle Fever Tick Research LaboratoryEdinburgTexas
| | - Scott M. Geib
- U.S. Department of Agriculture‐Agricultural Research ServiceDaniel K. Inouye U.S. Pacific Basin Agricultural Research CenterHiloHawaii
| |
Collapse
|
14
|
Garzón-Orduña IJ, Geib SM, Barr NB. The Genetic Diversity of Bactrocera dorsalis (Diptera: Tephritidae) in China and Neighboring Countries: A Review From Published Studies. JOURNAL OF ECONOMIC ENTOMOLOGY 2019; 112:2001-2006. [PMID: 31004431 DOI: 10.1093/jee/toz073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Indexed: 06/09/2023]
Abstract
For more than a decade, various research groups have tracked the population genetics of the oriental fruit fly, Bactrocera dorsalis (Hendel) in China and neighboring countries using mitochondrial cytochrome c oxidase subunit I (COI) DNA. Although most research has reported high levels of mtDNA variation, to date no efforts have been made to integrate and compare the results from these studies simultaneously. Here, we show that: 1) despite the fact that a large portion of the sampling effort has focused on the Yunnan province beginning in 2005, each subsequent study recovers only a small number of previously sampled haplotypes; 2) new haplotypes of B. dorsalis remain to be found, a projection of new haplotypes versus the number of individuals sampled suggest that sampling the species mtDNA diversity is far from reaching an asymptote; 3) it is unlikely that the observed genetic variation is the result of NUMTs (nuclear mitochondrial DNA), as most differences between haplotypes are silent substitutions; and 4) although all studies employed the 3' end of COI, the length of COI fragment sequenced differs among studies, making comparisons challenging. Therefore, we offer these results with the caveat that mtDNA diversity might be underestimated in China.
Collapse
Affiliation(s)
- Ivonne J Garzón-Orduña
- Colección Nacional de Insectos, Instituto de Biología, Universidad Autónoma de México, Ciudad de México, Delegación Coyoacán, CDMX, Mexico
- Department of Plant and Environmental Protection Sciences, University of Hawaii, Honolulu, HI
| | - Scott M Geib
- U.S. Department of Agriculture, Agricultural Research Center (USDA-ARS), Daniel K. Inouye U.S. Pacific Basin Agricultural Research Center, Hilo, HI
| | - Norman B Barr
- Center for Plant Health Science and Technology, Mission Laboratory, USDA-APHIS, Moore Air Base, Edinburg, TX
| |
Collapse
|
15
|
Erlandson MA, Mori BA, Coutu C, Holowachuk J, Olfert OO, Gariepy TD, Hegedus DD. Examining population structure of a bertha armyworm, Mamestra configurata (Lepidoptera: Noctuidae), outbreak in western North America: Implications for gene flow and dispersal. PLoS One 2019; 14:e0218993. [PMID: 31247053 PMCID: PMC6597092 DOI: 10.1371/journal.pone.0218993] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/13/2019] [Indexed: 12/01/2022] Open
Abstract
The bertha armyworm (BAW), Mamestra configurata, is a significant pest of canola (Brassica napus L. and B. rapa L.) in western North America that undergoes cyclical outbreaks every 6-8 years. During peak outbreaks millions of dollars are spent on insecticidal control and, even with control efforts, subsequent damage can result in losses worth millions of dollars. Despite the importance of this pest insect, information is lacking on the dispersal ability of BAW and the genetic variation of populations from across its geographic range which may underlie potential differences in their susceptibility to insecticides or pathogens. Here, we examined the genetic diversity of BAW populations during an outbreak across its geographic range in western North America. First, mitochondrial cytochrome oxidase 1 (CO1) barcode sequences were used to confirm species identification of insects captured in a network of pheromone traps across the range, followed by haplotype analyses. We then sequenced the BAW genome and used double-digest restriction site associated DNA sequencing, mapped to the genome, to identify 1000s of single nucleotide polymorphisms (SNP) markers. CO1 haplotype analysis identified 9 haplotypes distributed across 28 sample locations and three laboratory-reared colonies. Analysis of genotypic data from both the CO1 and SNP markers revealed little population structure across BAW's vast range. The CO1 haplotype pattern showed a star-like phylogeny which is often associated with species whose population abundance and range has recently expanded and combined with pheromone trap data, indicates the outbreak may have originated from a single focal point in central Saskatchewan. The relatively recent introduction of canola and rapid expansion of the canola growing region across western North America, combined with the cyclical outbreaks of BAW caused by precipitous population crashes, has likely selected for a genetically homogenous BAW population adapted to this crop.
Collapse
Affiliation(s)
- Martin A. Erlandson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Boyd A. Mori
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Cathy Coutu
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Jennifer Holowachuk
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Owen O. Olfert
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| | - Tara D. Gariepy
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON CANADA
| | - Dwayne D. Hegedus
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK CANADA
| |
Collapse
|