1
|
Jiang B, Chen Y, Xing Y, Lian L, Shen Y, Zhang B, Zhang H, Sun G, Li J, Wang X, Zhang D. Negative correlations between cultivable and active-yet-uncultivable pyrene degraders explain the postponed bioaugmentation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127189. [PMID: 34555764 DOI: 10.1016/j.jhazmat.2021.127189] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Bioaugmentation is an effective approach to remediate soils contaminated by polycyclic aromatic hydrocarbons (PAHs), but suffers from unsatisfactory performance in engineering practices, which is hypothetically explained by the complicated interactions between indigenous microbes and introduced degraders. This study isolated a cultivable pyrene degrader (Sphingomonas sp. YT1005) and an active pyrene degrading consortium (Gp16, Streptomyces, Pseudonocardia, Panacagrimonas, Methylotenera and Nitrospira) by magnetic-nanoparticle mediated isolation (MMI) from soils. Pyrene biodegradation was postponed in bioaugmentation with Sphingomonas sp. YT1005, whilst increased by 30.17% by the active pyrene degrading consortium. Pyrene dioxygenase encoding genes (nidA, nidA3 and PAH-RHDα-GP) were enriched in MMI isolates and positively correlated with pyrene degradation efficiency. Pyrene degradation by Sphingomonas sp. YT1005 only followed the phthalate pathway, whereas both phthalate and salicylate pathways were observed in the active pyrene degrading consortium. The results indicated that the uncultivable pyrene degraders were suitable for bioaugmentation, rather than cultivable Sphingomonas sp. YT1005. The negative correlations between Sphingomonas sp. YT1005 and the active-yet-uncultivable pyrene degraders were the underlying mechanisms of bioaugmentation postpone in engineering practices.
Collapse
Affiliation(s)
- Bo Jiang
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China; National Engineering Laboratory for Site Remediation Technologies, Beijing 100015, PR China
| | - Yating Chen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Luning Lian
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Yaoxin Shen
- School of Energy and Environmental Engineering, University of Science & Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science & Technology Beijing, Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Han Zhang
- School of Water Resources and Environment, MOE Key Lab Groundwater Circulation and Environment Evolution, China University of Geosciences, Beijing 100083, PR China
| | - Guangdong Sun
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Junyi Li
- Department of Research and Development, Yiqing (Suzhou) Environmental Technology Co. Ltd, Suzhou 215163, PR China
| | - Xinzi Wang
- School of Environment, Tsinghua University, Beijing 100084, PR China
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, PR China.
| |
Collapse
|
2
|
Current Status of the Degradation of Aliphatic and Aromatic Petroleum Hydrocarbons by Thermophilic Microbes and Future Perspectives. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15122782. [PMID: 30544637 PMCID: PMC6313336 DOI: 10.3390/ijerph15122782] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/10/2023]
Abstract
Contamination of the environment by petroleum products is a growing concern worldwide, and strategies to remove these contaminants have been evaluated. One of these strategies is biodegradation, which consists of the use of microorganisms. Biodegradation is significantly improved by increasing the temperature of the medium, thus, the use of thermophiles, microbes that thrive in high-temperature environments, will render this process more efficient. For instance, various thermophilic enzymes have been used in industrial biotechnology because of their unique catalytic properties. Biodegradation has been extensively studied in the context of mesophilic microbes, and the mechanisms of biodegradation of aliphatic and aromatic petroleum hydrocarbons have been elucidated. However, in comparison, little work has been carried out on the biodegradation of petroleum hydrocarbons by thermophiles. In this paper, a detailed review of the degradation of petroleum hydrocarbons (both aliphatic and aromatic) by thermophiles was carried out. This work has identified the characteristics of thermophiles, and unraveled specific catabolic pathways of petroleum products that are only found with thermophiles. Gaps that limit our understanding of the activity of these microbes have also been highlighted, and, finally, different strategies that can be used to improve the efficiency of degradation of petroleum hydrocarbons by thermophiles were proposed.
Collapse
|
3
|
Yuan K, Chen B, Qing Q, Zou S, Wang X, Luan T. Polycyclic aromatic hydrocarbons (PAHs) enrich their degrading genera and genes in human-impacted aquatic environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:936-944. [PMID: 28743092 DOI: 10.1016/j.envpol.2017.07.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
Bacterial degradation is an important clearance pathway for organic contaminants from highly human-impacted environments. However, it is not fully understood how organic contaminants are selected for degradation by bacteria and genes in aquatic environments. In this study, PAH degrading bacterial genera and PAH-degradation-related genes (PAHDGs) in sediments collected from the Pearl River (PR), the Pearl River Estuary (PRE) and the South China Sea (SCS), among which there were distinct differences in anthropogenic impact, were analyzed using metagenomic approaches. The diversity and abundance of PAH degrading genera and PAHDGs in the PR were substantially higher than those in the PRE and the SCS and were significantly correlated with the total PAH concentration. PAHDGs involved with the three key processes of PAH degradation (ring cleavage, side chain and central aromatic processes) were significantly correlated with each other in the sediments. In particular, plasmid-related PAHDGs were abundant in the PR sediments, indicating plasmid-mediated horizontal transfer of these genes between bacteria or the overgrowth of the bacteria containing these plasmids under the stresses of PAHs. Our results suggest that PAH degrading bacteria and genes were rich in PAH-polluted aquatic environments, which could facilitate the removal of PAHs by bacteria.
Collapse
Affiliation(s)
- Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Qing Qing
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Shichun Zou
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Xiaowei Wang
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Science, Sun Yat-Sen University, Guangzhou 510275, China; South China Sea Resource Exploitation and Protection Collaborative Innovation Center, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China; School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
4
|
Kumari S, Regar RK, Bajaj A, Ch R, Satyanarayana GNV, Mudiam MKR, Manickam N. Simultaneous Biodegradation of Polyaromatic Hydrocarbons by a Stenotrophomonas sp: Characterization of nid Genes and Effect of Surfactants on Degradation. Indian J Microbiol 2016; 57:60-67. [PMID: 28148980 DOI: 10.1007/s12088-016-0612-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/21/2016] [Indexed: 11/25/2022] Open
Abstract
A polyaromatic hydrocarbon degrading bacterium was isolated from a petroleum contaminated site and designated as Stenotrophomonas sp. strain IITR87. It was found to utilize pyrene, phenanthrene and benzo(a)pyrene as sole carbon source, but not anthracene, chrysene and fluoranthene. Gas chromatography and mass spectroscopy analysis resulted in identification of pyrene metabolites namely monohydroxypyrene, 4-oxa-pyrene-5-one, dimethoxypyrene and monohydroxyphenanthrene. Southern hybridization using naphthalene dioxygenase gene (nidA) as probe against the DNA of strain IITR87 revealed the presence of nidA gene. PCR analysis suggests dispersed occurrence of nid genes in the genome instead of a cluster as reported in a PAH-degrading Mycobacterium vanbaalenii PYR-1. The nid genes in strain IITR87, dioxygenase large subunit (nidA), naphthalene dioxygenase small subunit (nidB) and aldehyde dehydrogenase gene (nidD) showed more than 97 % identity to the reported nid genes from Mycobacterium vanbaalenii PYR-1. Most significantly, the biodegradation of PAHs was enhanced 25-60 % in the presence of surfactants rhamnolipid and Triton X-100 due to increased solubilization and bioavailability. These results could be useful for the improved biodegradation of high-molecular-weight PAHs in contaminated habitats.
Collapse
Affiliation(s)
- Smita Kumari
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Raj Kumar Regar
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Department of Biochemistry, Babu Banarsi Das University, Lucknow, 226028 India
| | - Abhay Bajaj
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Molecular Biology Laboratory, Department of Zoology, University of Delhi, Delhi, 110007 India
| | - Ratnasekhar Ch
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Gubbala Naga Venkata Satyanarayana
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Mohana Krishna Reddy Mudiam
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| | - Natesan Manickam
- Environmental Biotechnology Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
- Academy of Scientific and Innovative Research, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, 226001 India
| |
Collapse
|
5
|
Nzila A. Update on the cometabolism of organic pollutants by bacteria. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:474-82. [PMID: 23570949 DOI: 10.1016/j.envpol.2013.03.042] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 03/17/2013] [Accepted: 03/19/2013] [Indexed: 05/20/2023]
Abstract
Each year, tons of various types of molecules pollute our environment, and their elimination is one of the major challenges human kind is facing. Among the strategies to eliminate these pollutants is their biodegradation by microorganisms. However, many pollutants cannot be used efficiently as growth substrates by microorganisms. Biodegradation of such molecules by cometabolism has been reported, which is the ability of a microorganism to biodegrade a pollutant without using it as a growth-substrate (non-growth-substrate), while sustaining its own growth by assimilating a different substrate (growth-substrate). This approach has been used in the field of bioremediation, however, its potential has not been fully exploited yet. This review summarises the work carried out on the cometabolism of important recalcitrant pollutants, and presents strategies that can be used to improve ways of identifying microorganisms that can cometabolise such recalcitrant pollutants.
Collapse
Affiliation(s)
- Alexis Nzila
- King Fahd University of Petroleum and Minerals, Department of Biology, PO Box 468, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
6
|
DeBruyn JM, Mead TJ, Sayler GS. Horizontal transfer of PAH catabolism genes in Mycobacterium: evidence from comparative genomics and isolated pyrene-degrading bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:99-106. [PMID: 21899303 DOI: 10.1021/es201607y] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Biodegradation of high molecular weight polycyclic aromatic hydrocarbons (PAHs), such as pyrene and benzo[a]pyrene, has only been observed in a few genera, namely fast-growing Mycobacterium and Rhodococcus. In M. vanbaalenii PYR-1, multiple aromatic ring hydroxylating dioxygenase (ARHDOs) genes including pyrene dioxygenases nidAB and nidA3B3 are localized in one genomic region. Here we examine the homologous genomic regions in four other PAH-degrading Mycobacterium (strains JLS, KMS, and MCS, and M. gilvum PYR-GCK), presenting evidence for past horizontal gene transfer events. Seven distinct types of ARHDO genes are present in all five genomes, and display conserved syntenic architecture with respect to gene order, orientation, and association with other genes. Duplications and putative integrase and transposase genes suggest past gene shuffling. To corroborate these observations, pyrene-degrading strains were isolated from two PAH-contaminated sediments: Chattanooga Creek (Tennessee) and Lake Erie (western basin). Some were related to fast-growing Mycobacterium spp. and carried both nidA and nidA3 genes. Other isolates belonged to Microbacteriaceae and Intrasporangiaceae presenting the first evidence of pyrene degradation in these families. These isolates had nidA (and some, nidA3) genes that were homologous to Mycobacterial ARHDO genes, suggesting that horizontal gene transfer events have occurred.
Collapse
Affiliation(s)
- Jennifer M DeBruyn
- Department of Biosystems Engineering and Soil Science, The University of Tennessee, Knoxville, Tennessee, United States
| | | | | |
Collapse
|
7
|
Peng JJ, Cai C, Qiao M, Li H, Zhu YG. Dynamic changes in functional gene copy numbers and microbial communities during degradation of pyrene in soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2872-2879. [PMID: 20615597 DOI: 10.1016/j.envpol.2010.06.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/01/2010] [Accepted: 06/10/2010] [Indexed: 05/29/2023]
Abstract
This study investigates the dynamics of pyrene degradation rates, microbial communities, and functional gene copy numbers during the incubation of pyrene-spiked soils. Spiking pyrene to the soil was found to have negligible effects on the bacterial community present. Our results demonstrated that there was a significant difference in nidA gene copy numbers between sampling dates in QZ soil. Mycobacterium 16S rDNA clone libraries showed that more than 90% mycobacteria detected were closely related to fast-growing PAH-degrading Mycobacterium in pyrene-spiked soil, while other sequences related to slow-growing Mycobacterium were only detected in the control soil. It is suggested that nidA gene copy number and fast-growing PAH-degrading Mycobacterium could be used as indicators to predict pyrene contamination and its degradation activity in soils.
Collapse
Affiliation(s)
- Jing-Jing Peng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | | | | | | | | |
Collapse
|
8
|
Debruyn JM, Mead TJ, Wilhelm SW, Sayler GS. PAH biodegradative genotypes in Lake Erie sediments: evidence for broad geographical distribution of pyrene-degrading mycobacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3467-3473. [PMID: 19544841 DOI: 10.1021/es803348g] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Despite a long history of anthropogenic contamination of Lake Erie sediments, little work has been done to understand the potential for PAH biodegradation by indigenous microbial communities. Pyrene-degrading Mycobacterium are prevalent in many polycyclic aromatic hydrocarbon (PAH)-contaminated freshwater sediments, and are of interest for their ability to degrade environmentally recalcitrant high molecular weight PAHs. This work tested the hypothesis that pyrene-degrading mycobacteria are prevalent in Lake Erie; an additional aim was to gain a baseline picture of the sediment microbial communities through sequencing a 16S rDNA clone library. Biodegradation potential of Lake Erie Mycobacterium populations was assessed through quantification of pyrene dioxygenase genes (nidA) and mycobacteria 16S rDNA genes using quantitative real time PCR. nidA was detected at all seven sampling sites across Lake Erie, with abundances ranging from 2.09 to 70.4 x 10(6) copies per gram sediment, with highest abundances at the most PAH-contaminated site (Cleveland Harbor). This is in contrastto naphthalene dioxygenase genes commonly used as biomarkers of PAH degradation: nahAc (from gamma-proteobacteria) was not detected anywhere, and nagAc (from beta-proteobacteria) was detected only in Cleveland Harbor, despite dominance by proteobacteria in Lake Erie sediment 16S rDNA clone libraries (>50% of clones). The prevalence of Mycobacterium nidA genotypes corroborated previous studies indicating that PAH-degrading mycobacteria have a cosmopolitan distribution and suggests they play an important but overlooked role in natural attenuation and cycling of PAHs in Lake Erie.
Collapse
Affiliation(s)
- Jennifer M Debruyn
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, Tennessee, USA
| | | | | | | |
Collapse
|
9
|
Chauhan A, Fazlurrahman, Oakeshott JG, Jain RK. Bacterial metabolism of polycyclic aromatic hydrocarbons: strategies for bioremediation. Indian J Microbiol 2008; 48:95-113. [PMID: 23100704 DOI: 10.1007/s12088-008-0010-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2007] [Revised: 01/21/2008] [Accepted: 02/04/2008] [Indexed: 10/22/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are compounds of intense public concern due to their persistence in the environment and potentially deleterious effects on human, environmental and ecological health. The clean up of such contaminants using invasive technologies has proven to be expensive and more importantly often damaging to the natural resource properties of the soil, sediment or aquifer. Bioremediation, which exploits the metabolic potential of microbes for the clean-up of recalcitrant xenobiotic compounds, has come up as a promising alternative. Several approaches such as improvement in PAH solubilization and entry into the cell, pathway and enzyme engineering and control of enzyme expression etc. are in development but far from complete. Successful application of the microorganisms for the bioremediation of PAH-contaminated sites therefore requires a deeper understanding of the physiology, biochemistry and molecular genetics of potential catabolic pathways. In this review, we briefly summarize important strategies adopted for PAH bioremediation and discuss the potential for their improvement.
Collapse
Affiliation(s)
- Archana Chauhan
- Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | | | | | | |
Collapse
|
10
|
Kim SJ, Kweon O, Jones RC, Edmondson RD, Cerniglia CE. Genomic analysis of polycyclic aromatic hydrocarbon degradation in Mycobacterium vanbaalenii PYR-1. Biodegradation 2008; 19:859-81. [PMID: 18421421 DOI: 10.1007/s10532-008-9189-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 03/28/2008] [Indexed: 11/29/2022]
Abstract
Mycobacterium vanbaalenii PYR-1 is well known for its ability to degrade a wide range of high-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs). The genome of this bacterium has recently been sequenced, allowing us to gain insights into the molecular basis for the degradation of PAHs. The 6.5 Mb genome of PYR-1 contains 194 chromosomally encoded genes likely associated with degradation of aromatic compounds. The most distinctive feature of the genome is the presence of a 150 kb major catabolic region at positions 494 approximately 643 kb (region A), with an additional 31 kb region at positions 4,711 approximately 4,741 kb (region B), which is predicted to encode most enzymes for the degradation of PAHs. Region A has an atypical mosaic structure made of several gene clusters in which the genes for PAH degradation are complexly arranged and scattered around the clusters. Significant differences in the gene structure and organization as compared to other well-known aromatic hydrocarbon degraders including Pseudomonas and Burkholderia were revealed. Many identified genes were enriched with multiple paralogs showing a remarkable range of diversity, which could contribute to the wide variety of PAHs degraded by M. vanbaalenii PYR-1. The PYR-1 genome also revealed the presence of 28 genes involved in the TCA cycle. Based on the results, we proposed a pathway in which HMW PAHs are degraded into the beta-ketoadipate pathway through protocatechuate and then mineralized to CO2 via TCA cycle. We also identified 67 and 23 genes involved in PAH degradation and TCA cycle pathways, respectively, to be expressed as proteins.
Collapse
Affiliation(s)
- Seong-Jae Kim
- Division of Microbiology, National Center for Toxicological Research/U.S. FDA, Jefferson, AR 72079, USA
| | | | | | | | | |
Collapse
|
11
|
Miller CD, Child R, Hughes JE, Benscai M, Der JP, Sims RC, Anderson AJ. Diversity of soil mycobacterium isolates from three sites that degrade polycyclic aromatic hydrocarbons. J Appl Microbiol 2007; 102:1612-24. [PMID: 17578427 DOI: 10.1111/j.1365-2672.2006.03202.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS This paper investigates the diversity of polycyclic aromatic hydrocarbon (PAH)-degrading mycobacterium isolates from three different sites within United States: Montana, Texas and Indiana. METHODS AND RESULTS All five mycobacterium isolates differed in chromosomal restriction enzyme-fragmentation patterns; three isolates possessed linear plasmids. The DNA sequence between the murA and rRNA genes were divergent but the sequence upstream of nidBA genes, encoding a dioxygenase involved in pyrene oxidation, was more highly conserved. Long-chain fatty acid analysis showed most similarity between three isolates from the same Montana site. All isolates were sensitive to rifampicin and isoniazid, used in tuberculosis treatment, and to syringopeptins, produced by plant-associated pseudomonads. Biofilm growth was least for isolate MCS that grew on plate medium as rough-edged colonies. The patterns of substrate utilization in Biolog plates showed clustering of the Montana isolates compared with Mycobacterium vanbaalenii and Mycobacterium gilvum. CONCLUSION The five PAH-degrading mycobacterium isolates studied differ in genetic and biochemical properties. SIGNIFICANCE AND IMPACT OF THE STUDY Different properties with respect to antibiotic susceptibility, substrate utilization and biofilm formation could influence the survival in soil of the microbe and their suitability for use in bioaugmentation.
Collapse
Affiliation(s)
- C D Miller
- Department of Biology, Utah State University, Logan, Utah, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Debruyn JM, Chewning CS, Sayler GS. Comparative quantitative prevalence of Mycobacteria and functionally abundant nidA, nahAc, and nagAc dioxygenase genes in coal tar contaminated sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:5426-32. [PMID: 17822112 DOI: 10.1021/es070406c] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The Chattanooga Creek Superfund site is heavily contaminated with metals, pesticides, and coal tar with sediments exhibiting high concentrations of polycyclic aromatic hydrocarbons (PAHs). High molecular weight PAHs are of concern because of their toxicity and recalcitrance in the environment; as such, there is great interest in microbes, such as fast-growing Mycobacterium spp., capable of degradation of these compounds. Real-time quantitative PCR assays were developed targeting multiple dioxygenase genes to assess the ecology and functional diversity of PAH-degrading communities. These assays target the Mycobacterium nidA, beta-proteobacteria nagAc, and gamma-proteobacteria nahAc with the specific goal of testing the hypothesis that Mycobacteria catabolic genes are enriched and may be functionally associated with high molecular weight PAH biodegradation in Chattanooga Creek. Dioxygenase gene abundances were quantitatively compared to naphthalene and pyrene mineralization, and temporal and spatial PAH concentrations. nidA abundances ranged from 5.69 x 10(4) to 4.92 x 10(6) copies per gram sediment; nagAc from 2.42 x 10(3) to 1.21 x 10(7), and nahAc from below detection to 4.01 x 10(6) copies per gram sediment. There was a significantly greater abundance of nidA and nagAc at sites with the greatest concentrations of PAHs. In addition, nidA and nagAc were significantly positively correlated (r = 0.76), indicating a coexistence of organisms carrying these genes. A positive relationship was also observed between nidA and nagAc and pyrene mineralization indicating that these genes serve as biomarkers for pyrene degradation. A 16S rDNA clone library of fast-growing Mycobacteria indicated that the population is very diverse and likely plays an important role in attenuation of high molecular weight PAHs from Chattanooga Creek.
Collapse
Affiliation(s)
- Jennifer M Debruyn
- Department of Ecology and Evolutionary Biology, Department of Microbiology, and Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | | | | |
Collapse
|
13
|
Andreoni V, Gianfreda L. Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 2007; 76:287-308. [PMID: 17541581 DOI: 10.1007/s00253-007-1018-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Bioremediation may restore contaminated soils through the broad biodegradative capabilities evolved by microorganisms towards undesirable organic compounds. Understanding bioremediation and its effectiveness is rapidly advancing, bringing available molecular approaches for examining the presence and expression of the key genes involved in microbial processes. These methods are continuously improving and require further development and validation of primer- and probe-based analyses and expansion of databases for alternative microbial markers. Phylogenetic marker approaches provide tools to determine which organisms are present or generally active in a community; functional gene markers provide only information concerning the distribution or transcript levels (deoxyribonucleic acid [DNA]- or messenger ribonucleic acid [mRNA]-based approaches) of specific gene populations across environmental gradients. Stable isotope probing methods offer great potential to identify microorganisms that metabolize and assimilate specific substrates in environmental samples, incorporating usually a rare isotope (i.e., (13)C) into their DNA and RNA. DNA and RNA in situ characterization allows the determination of the species actually involved in the processes being measured. DNA microarrays may analyze the expression of thousands of genes in a soil simultaneously. A global analysis of which genes are being expressed under various conditions in contaminated soils will reveal the metabolic status of microorganisms and indicate environmental modifications accelerating bioremediation.
Collapse
Affiliation(s)
- Vincenza Andreoni
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | |
Collapse
|
14
|
Child R, Miller CD, Liang Y, Narasimham G, Chatterton J, Harrison P, Sims RC, Britt D, Anderson AJ. Polycyclic aromatic hydrocarbon-degrading Mycobacterium isolates: their association with plant roots. Appl Microbiol Biotechnol 2007; 75:655-63. [PMID: 17256117 DOI: 10.1007/s00253-007-0840-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/28/2022]
Abstract
Five environmental mycobacterium isolates that degrade polycyclic aromatic hydrocarbons (PAHs) were associated with barley root surfaces after growth of the seedlings from inoculated seed. Mycobacterium cells were detected along the total root length for four of these isolates. These PAH-degrading mycobacterium strains had hydrophilic cell surfaces, whereas one strain, MCS, that was hydrophobic had reduced association along the root length with no cells being detected from the root tips. The root-tip-competent strain, KMS, was competitive for its root association in the presence of the root-colonizing pseudomonad, Pseudomonas putida KT2440. All mycobacterium strains utilized simple sugars (fructose, glucose) and the trisaccharide 6-kestose, present in barley root washes, for planktonic growth, but they differed in their potential for biofilm formation under in vitro conditions. Mineralization of pyrene by the KMS strain occurred when the components in the barley root wash were amended with labeled pyrene suggesting to us that mineralization could occur in plant rhizospheres containing such mycobacterium strains.
Collapse
Affiliation(s)
- R Child
- Department of Biology, Utah State University, Logan, UT 84322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liang Y, Gardner DR, Miller CD, Chen D, Anderson AJ, Weimer BC, Sims RC. Study of biochemical pathways and enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS. Appl Environ Microbiol 2006; 72:7821-8. [PMID: 17041157 PMCID: PMC1694249 DOI: 10.1128/aem.01274-06] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2006] [Accepted: 10/05/2006] [Indexed: 11/20/2022] Open
Abstract
Pyrene degradation is known in bacteria. In this study, Mycobacterium sp. strain KMS was used to study the metabolites produced during, and enzymes involved in, pyrene degradation. Several key metabolites, including pyrene-4,5-dione, cis-4,5-pyrene-dihydrodiol, phenanthrene-4,5-dicarboxylic acid, and 4-phenanthroic acid, were identified during pyrene degradation. Pyrene-4,5-dione, which accumulates as an end product in some gram-negative bacterial cultures, was further utilized and degraded by Mycobacterium sp. strain KMS. Enzymes involved in pyrene degradation by Mycobacterium sp. strain KMS were studied, using 2-D gel electrophoresis. The first protein in the catabolic pathway, aromatic-ring-hydroxylating dioxygenase, which oxidizes pyrene to cis-4,5-pyrene-dihydrodiol, was induced with the addition of pyrene and pyrene-4,5-dione to the cultures. The subcomponents of dioxygenase, including the alpha and beta subunits, 4Fe-4S ferredoxin, and the Rieske (2Fe-2S) region, were all induced. Other proteins responsible for further pyrene degradation, such as dihydrodiol dehydrogenase, oxidoreductase, and epoxide hydrolase, were also found to be significantly induced by the presence of pyrene and pyrene-4,5-dione. Several nonpathway-related proteins, including sterol-binding protein and cytochrome P450, were induced. A pyrene degradation pathway for Mycobacterium sp. strain KMS was proposed and confirmed by proteomic study by identifying almost all the enzymes required during the initial steps of pyrene degradation.
Collapse
Affiliation(s)
- Yanna Liang
- Department of Civil and Environmental Engineering, 4105 Old Main Hill, Utah State University, Logan, UT 84322-4105, USA
| | | | | | | | | | | | | |
Collapse
|
16
|
Tecon R, Wells M, van der Meer JR. A new green fluorescent protein-based bacterial biosensor for analysing phenanthrene fluxes. Environ Microbiol 2006; 8:697-708. [PMID: 16584481 DOI: 10.1111/j.1462-2920.2005.00948.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The polycyclic aromatic hydrocarbon (PAH)-degrading strain Burkholderia sp. RP007 served as host strain for the design of a bacterial biosensor for the detection of phenanthrene. RP007 was transformed with a reporter plasmid containing a transcriptional fusion between the phnS putative promoter/operator region and the gene encoding the enhanced green fluorescent protein (GFP). The resulting bacterial biosensor--Burkholderia sp. strain RP037--produced significant amounts of GFP after batch incubation in the presence of phenanthrene crystals. Co-incubation with acetate did not disturb the phenanthrene-specific response but resulted in a homogenously responding population of cells. Active metabolism was required for induction with phenanthrene. The magnitude of GFP induction was influenced by physical parameters affecting the phenanthrene flux to the cells, such as the contact surface area between solid phenanthrene and the aqueous phase, addition of surfactant, and slow phenanthrene release from Model Polymer Release System beads or from a water-immiscible oil. These results strongly suggest that the bacterial biosensor can sense different phenanthrene fluxes while maintaining phenanthrene metabolism, thus acting as a genuine sensor for phenanthrene bioavailability. A relationship between GFP production and phenanthrene mass transfer is proposed.
Collapse
Affiliation(s)
- Robin Tecon
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | | | | |
Collapse
|