1
|
Satapute P, De Britto S, Hadimani S, Abdelrahman M, Alarifi S, Govind SR, Jogaiah S. Bacterial chemotaxis of herbicide atrazine provides an insight into the degradation mechanism through intermediates hydroxyatrazine, N-N-isopropylammelide, and cyanuric acid compounds. ENVIRONMENTAL RESEARCH 2023; 237:117017. [PMID: 37652220 DOI: 10.1016/j.envres.2023.117017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/20/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
In recent times, the herbicide atrazine (ATZ) has been commonly used before and after the cultivation of crop plants to manage grassy weeds. Despite its effect, the toxic residues of ATZ affect soil fertility and crop yield. Hence, the current study is focused on providing insight into the degradation mechanism of the herbicide atrazine through bacterial chemotaxis involving intermediates responsive to degradation. A bacterium was isolated from ATZ-contaminated soil and identified as Pseudomonas stutzeri based on its morphology, biochemical and molecular characterization. Upon ultra-performance liquid chromatography analysis, the free cells of isolated bacterium strain was found to utilize 174 μg/L of ATZ after 3-days of incubation on a mineral salt medium containing 200 μg/L of ATZ as a sole carbon source. It was observed that immobilized based degradation of ATZ yielded 198 μg/L and 190 μg/L by the cells entrapped with silica beads and sponge, respectively. Furthermore, the liquid chromatography-mass spectroscopy revealed that the secretion of three significant metabolites, namely, cyanuric acid, hydroxyatrazine and N- N-Isopropylammelide is responsive to the biodegradation of ATZ by the bacterium. Collectively, this research demonstrated that bacterium strains are the most potent agent for removing toxic pollutants from the environment, thereby enhancing crop yield and soil fertility with long-term environmental benefits.
Collapse
Affiliation(s)
- Praveen Satapute
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | - Savitha De Britto
- Division of Biological Sciences, School of Science and Technology, University of Goroka, Goroka, 441, Papua New Guinea
| | - Shiva Hadimani
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India
| | | | - Saud Alarifi
- Department of Zoology, College of Science, King Saud University, PO Box 2455, Riyadh, 11451, Saudi Arabia
| | | | - Sudisha Jogaiah
- Laboratory of Plant Healthcare and Diagnostics, P.G. Department of Biotechnology and Microbiology, Karnatak University, Dharwad, 580003, Karnataka, India; Department of Environmental Science, Central University of Kerala, Tejaswini Hills, Periye (PO), 671316, Kasaragod (DT), Kerala, India.
| |
Collapse
|
2
|
Zhou Q, Zhou X, Zheng R, Liu Z, Wang J. Application of lead oxide electrodes in wastewater treatment: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150088. [PMID: 34563906 DOI: 10.1016/j.scitotenv.2021.150088] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 08/29/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Electrochemical oxidation (EO) based on hydroxyl radicals (·OH) generated on lead dioxide has become a typical advanced oxidation process (AOP). Titanium-based lead dioxide electrodes (PbO2/Ti) play an increasingly important role in EO. To further improve the efficiency, the structure and properties of the lead dioxide active surface layer can be modified by doping transition metals, rare earth metals, nonmetals, etc. Here, we compare the common preparation methods of lead dioxide. The EO performance of lead dioxide in wastewater containing dyes, pesticides, drugs, landfill leachate, coal, petrochemicals, etc., is discussed along with their suitable operating conditions. Finally, the factors influencing the contaminant removal kinetics on lead dioxide are systematically analysed.
Collapse
Affiliation(s)
- Qingqing Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xule Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ruihao Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zifeng Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Jiade Wang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| |
Collapse
|
3
|
Wang J, Liu H, Wang Y, Ma D, Yao G, Yue Q, Gao B, Xu X. A new UV source activates ozone for water treatment: Wavelength-dependent ultraviolet light-emitting diode (UV-LED). Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
4
|
Yao Y, Li M, Yang Y, Cui L, Guo L. Electrochemical degradation of insecticide hexazinone with Bi-doped PbO 2 electrode: Influencing factors, intermediates and degradation mechanism. CHEMOSPHERE 2019; 216:812-822. [PMID: 30404074 DOI: 10.1016/j.chemosphere.2018.10.191] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/16/2018] [Accepted: 10/27/2018] [Indexed: 06/08/2023]
Abstract
Electrochemical degradation of hexazinone in aqueous solution using Bi-doped PbO2 electrodes as anodes was investigated. The main influencing parameters on the electrocatalytic degradation of hexazinone were analyzed as function of initial hexazinone concentration, current density, initial pH value and Na2SO4 concentration. The experiment results showed that the electrochemical oxidization reaction of hexazinone fitted pseudo-first-order kinetics model. 99.9% of hexazinone can be decontaminated using Bi-doped PbO2 electrode as anode for 120 min. Comparing with pure PbO2 electrode, the Bi-doped PbO2 electrodes possess higher hexazinone and COD removal ratio, higher ICE and lower energy consumption in the electrocatalytic degradation process. The results revealed that electrochemical oxidation using Bi-doped PbO2 anodes was an efficient method for the elimination of hexazinone in aqueous solution. The electrocatalytic oxidization mechanism of hexazinone with Bi-doped PbO2 anode was discussed, then the possible degradation pathway of hexazinone with two parallel sub-routes was elucidated according to 15 intermediates identified using HPLC-MS.
Collapse
Affiliation(s)
- Yingwu Yao
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, PR China.
| | - Mengyao Li
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, PR China
| | - Yang Yang
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, PR China.
| | - Leilei Cui
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, PR China
| | - Lin Guo
- Hebei University of Technology, School of Chemical Engineering and Technology, Tianjin 300130, PR China
| |
Collapse
|
5
|
Ngigi A, Getenga Z, Boga H, Ndalut P. Isolation and identification of hexazinone-degrading bacterium from sugarcane-cultivated soil in Kenya. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:364-368. [PMID: 24458247 DOI: 10.1007/s00128-014-1207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
The s-triazine herbicide hexazinone [3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione], is widely used in agriculture for weed control. Laboratory biodegradation experiments for hexazinone in liquid cultures were carried out using sugarcane-cultivated soils in Kenya. Liquid culture experiments with hexazinone as the only carbon source led to the isolation of a bacterial strain capable of its degradation. Through morphological, biochemical and molecular characterization by 16S rRNA, the isolate was identified as Enterobacter cloacae. The isolate degraded hexazinone up to 27.3% of the initially applied concentration of 40 μg mL(-1) after 37 days of incubation in a liquid culture medium. The study reports the degradation of hexazinone and characterization of the isolated bacterial strain.
Collapse
Affiliation(s)
- Anastasiah Ngigi
- Department of Physical Sciences, Multimedia University of Kenya, P.O. Box 30305-00100, Magadi Road, Nairobi, Kenya,
| | | | | | | |
Collapse
|