1
|
Yankelzon I, Englman T, Bernstein A, Siebner H, Ronen Z, Gelman F. Multi-elemental C-Br-Cl isotope analysis for characterizing biotic and abiotic transformations of 1-bromo-2-chloroethane (BCE). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:22749-22757. [PMID: 32323238 DOI: 10.1007/s11356-020-08870-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 04/13/2020] [Indexed: 06/11/2023]
Abstract
Multi-elemental C-Br-Cl compound-specific isotope analysis was applied for characterizing abiotic and biotic degradation of the environmental pollutant 1-bromo-2-chloroethane (BCE). Isotope effects were determined in the model processes following hydrolytic dehalogenation and dihaloelimination pathways as well as in a microcosm experiment by the microbial culture from the contaminated site. Hydrolytic dehalogenation of BCE under alkaline conditions and by DhaA enzyme resulted in similar dual isotope slopes (ɅC/Br 21.9 ± 4.7 and 19.4 ± 1.8, respectively, and ɅC/Cl ~ ∞). BCE transformation by cyanocobalamin (B12) and by Sulfurospirillum multivorans followed dihaloelimination and was accompanied by identical, within the uncertainty range, dual isotope slopes (ɅC/Br 8.4 ± 1.7 and 7.9 ± 4.2, respectively, and ɅC/Cl 2.4 ± 0.3 and 1.5 ± 0.6, respectively). Changes over time in the isotope composition of BCE from the contaminated groundwater showed only a slight variation in δ13C values and were not sufficient for the elucidation of the BCE degradation pathway in situ. However, an anaerobic microcosm experiment with the enrichment cultures from the contaminated groundwater presented dual isotope slopes similar to the hydrolytic pathway, suggesting that the potential for BCE degradation in situ by the hydrolytic dehalogenation pathway exists in the contaminated site.
Collapse
Affiliation(s)
- Irina Yankelzon
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beer-Sheva, Israel
| | - Tzofia Englman
- Geological Survey of Israel, 32 Yesha'ayahu Leibowitz St., 9692100, Jerusalem, Israel
- The Institute of Chemistry, The Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Anat Bernstein
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beer-Sheva, Israel
| | - Hagar Siebner
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beer-Sheva, Israel
| | - Zeev Ronen
- Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 84990, Beer-Sheva, Israel
| | - Faina Gelman
- Geological Survey of Israel, 32 Yesha'ayahu Leibowitz St., 9692100, Jerusalem, Israel.
| |
Collapse
|
2
|
Hosoda A, Isomura Y, Takeo S, Onai T, Takeuchi K, Toda M, Tamura H. Aerobic Dechlorination of Dichloromethane Using Biostimulation Agent BD-C in Continuous and Batch Cultures of Xanthobacter autotrophicus GJ10. J Oleo Sci 2017; 66:1247-1256. [PMID: 29021488 DOI: 10.5650/jos.ess17072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is important to construct microbiological treatment systems for organic solvent-contaminated water. We developed a continuous culture supplemented with a biostimulation agent named BD-C, which is formulated from canola oil, and Xanthobacter autotrophicus strain GJ10 for an aerobic dichloromethane (DCM)-dechlorinating microorganism. The continuous culture was a chemostat constructed using a 1 L screw-capped bottle containing artificial wastewater medium with 2.0 mM DCM and 1.0% (v/v) BD-C. The expression of genes for DCM metabolism in the dechlorinating aerobe was monitored and analyzed by reverse transcription-quantitative PCR. Strain GJ10 was able to dechlorinate approximately 74% of the DCM in medium supplemented with BD-C during 12 days of incubation. The DCM dechlorination rate was calculated to be 0.11 mM/day. The ΔΔCT method showed that expression of haloalkane dehalogenase increased 5.4 times in the presence of BD-C. Based on batch culture growth tests conducted with mineral salt medium containing three DCM concentrations (0.07, 0.20, 0.43 and 0.65 mM) with BD-C, the apparent maximum specific consumption rate (νmax) and the saturation constant (Ks) determined for DCM degradation in this test were 19.0 nmol/h/CFU and 0.44 mM, respectively. In conclusion, BD-C enhanced the aerobic degradation of DCM by strain GJ10.
Collapse
Affiliation(s)
- Akifumi Hosoda
- Department of Environmental Bioscience, Meijo University
| | - Yuta Isomura
- Department of Environmental Bioscience, Meijo University
| | - Syungo Takeo
- Department of Environmental Bioscience, Meijo University
| | - Takuho Onai
- Department of Environmental Bioscience, Meijo University
| | | | | | - Hiroto Tamura
- Department of Environmental Bioscience, Meijo University
| |
Collapse
|
3
|
Trueba-Santiso A, Parladé E, Rosell M, Lliros M, Mortan SH, Martínez-Alonso M, Gaju N, Martín-González L, Vicent T, Marco-Urrea E. Molecular and carbon isotopic characterization of an anaerobic stable enrichment culture containing Dehalobacterium sp. during dichloromethane fermentation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:640-648. [PMID: 28063652 DOI: 10.1016/j.scitotenv.2016.12.174] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 12/27/2016] [Accepted: 12/28/2016] [Indexed: 06/06/2023]
Abstract
UNLABELLED Biodegradation of dichloromethane (DCM) under reducing conditions is of major concern due to its widespread detection in contaminated groundwaters. Here, we report an anaerobic enrichment culture derived from a membrane bioreactor operating in an industrial wastewater treatment plant, capable of fermenting DCM and the brominated analogue dibromomethane (DBM). Comparative analysis of bacterial 16S rDNA-DGGE profiles from fresh liquid medium inoculated with single colonies picked from serial dilution-to-extinction agar vials showed that cultures degrading DCM contained a predominant band belonging to Dehalobacterium, however this band was absent in cultures unable to degrade DCM. Analysis of the microbial composition of the enrichment by bacterial 16S rRNA gene amplicon paired-end sequencing confirmed the presence of Dehalobacterium together with three additional phylotypes belonging to Acetobacterium, Desulfovibrio, and Wolinella, representing all four operational taxonomic units >99.9% of the retrieved sequences. The carbon isotopic fractionation (ε) determined for DCM degradation in this culture was -27±2‰. This value differs from the ε previously reported for the DCM-fermentative bacteria Dehalobacter (-15.5±1.5‰) but they are both significantly different from those reported for facultative methylotrophic organisms (ranging from -45 to -61‰). This significant difference in the ε allows differentiating between hydrolytic transformation of DCM via glutathione-dependent dehalogenases and fermentation pathway. CAPSULE The carbon isotopic fractionation of dichloromethane by an enriched Dehalobacterium-containing culture has significant potential to monitor biodegradation of DCM in groundwaters.
Collapse
Affiliation(s)
- Alba Trueba-Santiso
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - Eloi Parladé
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Mònica Rosell
- Grup de Mineralogia Aplicada i Geoquímica de Fluids, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona (UB), Martí Franquès s/n, 08028 Barcelona, Spain
| | - Marc Lliros
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Siti Hatijah Mortan
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - Maira Martínez-Alonso
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Nuria Gaju
- Departament de Genètica i Microbiologia, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Lucía Martín-González
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - Teresa Vicent
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain
| | - Ernest Marco-Urrea
- Departament d'Enginyeria Química, Biològica i Ambiental, Universitat Autònoma de Barcelona (UAB), Carrer de les Sitges s/n, 08193 Bellaterra, Spain.
| |
Collapse
|
4
|
Ma J, Nossa CW, Xiu Z, Rixey WG, Alvarez PJJ. Adaptive microbial population shifts in response to a continuous ethanol blend release increases biodegradation potential. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:419-425. [PMID: 23628885 DOI: 10.1016/j.envpol.2013.03.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/26/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
The fate of fuel releases largely depends on the poorly-understood response in microbial community structure and function. Here, we evaluate the impacts to the microbial community resulting from a pilot-scale continuous release (10 months) of a 10% v:v ethanol solution mixed with benzene and toluene (50 mg/L each). Microbial population shifts were characterized by pyrosequencing-based 16S rRNA analysis and by quantitative PCR targeting Bacteria, Archaea, and functional genes for methanogenesis (mcrA), acetogenesis (fhs) and aerobic degradation of aromatic hydrocarbons (PHE), which could occur in hypoxic micro-environments. The release stimulated microbial growth, increased species richness and diversity, and selected for genotypes involved in fermentative degradation (the relative abundance of mcrA and fhs increased 18- and 6-fold, respectively). The growth of putative hydrocarbon degraders and commensal anaerobes, and increases in microbial diversity and in degradation rates suggest an adaptive response that increases the potential for natural attenuation of ethanol blend releases.
Collapse
Affiliation(s)
- Jie Ma
- Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, TX 77005, USA
| | | | | | | | | |
Collapse
|
5
|
Fabritz S, Maaß F, Avrutina O, Heiseler T, Steinmann B, Kolmar H. A sensitive method for rapid detection of alkyl halides and dehalogenase activity using a multistep enzyme assay. AMB Express 2012; 2:51. [PMID: 23006907 PMCID: PMC3487978 DOI: 10.1186/2191-0855-2-51] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Accepted: 09/16/2012] [Indexed: 01/21/2023] Open
Abstract
A method for the detection of haloalkane conversion to the corresponding alcohols by haloalkane dehalogenases is described. It is based on a multistage enzyme reaction which allows for the analysis of alkyl halides in buffered systems. Irreversible hydrolytic dehalogenation catalyzed by haloalkane dehalogenase DhaA from Rhodococcus erythropolis transfers an alkyl halide into a corresponding alcohol that is further oxidized by alcohol oxidase AOX from Pichia pastoris yielding a respective aldehyde and hydrogen peroxide easily detectable via the horseradish peroxidase catalyzed oxidation of chromogenic molecules. Due to its high sensitivity (0.025 mM, 0.43 ppm for 1,3-dibromopropane), low expenditure and the ability of handling a large number of samples in parallel, this method is an attractive alternative to existing procedures for the monitoring of both haloalkanes and dehalogenases.
Collapse
|
6
|
Emanuelsson MAE, Osuna MB, Ferreira Jorge RM, Castro PML. Isolation of a Xanthobacter sp. degrading dichloromethane and characterization of the gene involved in the degradation. Biodegradation 2008; 20:235-44. [DOI: 10.1007/s10532-008-9216-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 09/02/2008] [Indexed: 11/27/2022]
|