1
|
Zhang L, Cheng Y, Qian Y, Ding T, Li J. Bisphenol S degradation in soil and the dynamics of microbial community associated with degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157451. [PMID: 35868379 DOI: 10.1016/j.scitotenv.2022.157451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Bisphenol S (BPS) has been widely applied as a replacement for BPA in industrial application, leading to the frequent detection in the environment. However, its impact on soil microbial communities has not been well reported. Here, effects of BPS exposure on soil microbial communities in the presence of polystyrene (PS) microplastics were revealed. Rapid degradation of BPS occurred with a degradation rate of up to 98.9 ± 0.001 % at 32 d. The presence of BPS reduced the diversity of soil microbial communities, and changed community structures. After BPS treatment, Proteobacteria, and its members Methylobacillus, Rhodobacteraceae and Mesorhizobium became dominant, and were considered as potential biomarkers indicating BPS contamination. Co-occurrence network analysis revealed the increased relationships of certain groups of microbes after BPS treatment. The resultant low stability and resilience towards environment disturbance of microbial community networks implied the biotoxicity of BPS towards soil ecosystems. The degradation and biotoxicity of BPS (p > 0.05) in soil was not affected by the presence of PS. Our findings showed that exposure to BPS could reshape soil microbial communities and impair the robustness of microbial co-occurrence networks.
Collapse
Affiliation(s)
- Lili Zhang
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanan Cheng
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yiguang Qian
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Tengda Ding
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Juying Li
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
2
|
Qian Z, Peng T, Huang T, Hu Z. Oxidization of benzo[a]pyrene by CYP102 in a novel PAHs-degrader Pontibacillus sp. HN14 with potential application in high salinity environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 321:115922. [PMID: 36027730 DOI: 10.1016/j.jenvman.2022.115922] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
Benzo [a]pyrene (BaP) is a type of high-molecular-weight polycyclic aromatic hydrocarbons (PAHs) with potent carcinogenicity; however, there are limited studies on its degradation mechanism. Here, a strain of Pontibacillus sp. HN14 with BaP degradation ability was isolated from mangrove sediments in Dongzhai Port, Hainan Province. Our study showed that biodegradation efficiencies reached 42.15% after Pontibacillus sp. HN14 was cultured with 20 mg L-1 BaP as the sole carbon source for 25 days and still had degradability of BaP at a 25% high salinity level. Moreover, 9,10-dihydrobenzo [a]pyrene-7(8H)-one, an intermediate metabolite, was detected during BaP degradation in the HN14 strain. Genome analysis identified a gene encoding the CYP102(HN14) enzyme. The results showed that the E. coli strain with CYP102(HN14) overexpression could transfer BaP to 9,10-dihydrobenzo [a]pyrene-7(8H)-one with a conversion rate of 43.5%, indicating that CYP102(HN14) played an essential role in BaP degradation in Pontibacillus sp. HN14. Thus, our results provide a novel BaP biodegradation molecule, which could be used in BaP bioremediation in high salinity conditions. This study is the first to show that CYP102(HN14) had the BaP oxidization ability in bacteria. CYP102(HN14) could be essential in removing PAHs in saline-alkali soil and other high salt environments through enzyme immobilization.
Collapse
Affiliation(s)
- Zhihui Qian
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tao Peng
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Tongwang Huang
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China
| | - Zhong Hu
- Department of Biology, Shantou University, Shantou, Guangdong, 515063, PR China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, PR China.
| |
Collapse
|
3
|
Zhao X, Li J, Zhang D, Huang Z, Luo C, Jiang L, Huang D, Zhang G. Mechanism of salicylic acid in promoting the rhizosphere benzo[a]pyrene biodegradation as revealed by DNA-stable isotope probing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152202. [PMID: 34890682 DOI: 10.1016/j.scitotenv.2021.152202] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/01/2021] [Accepted: 12/01/2021] [Indexed: 06/13/2023]
Abstract
Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.
Collapse
Affiliation(s)
- Xuan Zhao
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Jibing Li
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dayi Zhang
- College of New Energy and Environment, Jilin University, Changchun 130021, China
| | - Zilin Huang
- Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China; Joint Institute of Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China.
| | - Longfei Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| | - Deyin Huang
- Guangdong Institute of Eco-environmental and Soil sciences, Guangdong Academy of Sciences, Guangzhou 510650, Guangdong, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China
| |
Collapse
|
4
|
Perpetuo EA, da Silva ECN, Karolski B, do Nascimento CAO. Biodegradation of diethyl-phthalate (DEP) by halotolerant bacteria isolated from an estuarine environment. Biodegradation 2020; 31:331-340. [PMID: 32980965 DOI: 10.1007/s10532-020-09913-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 09/18/2020] [Indexed: 11/27/2022]
Abstract
Phthalates are widely used as plasticizers in many industrial products due to their chemical properties that confer flexibility and durability to building materials, lubricants, solvents, insect repellents, clothing, cosmetics, being widely distributed in the environment. Besides persistent, they are also considered endocrine-disrupting compounds (EDCs), causing a global concern about their release into the environment, once they can alter the reproductive and endocrine health of humans systems. Under natural conditions, photodegradation and hydrolysis rates of phthalates are often very slow; therefore, microbial degradation is a natural way to treat these pollutants. In this context, three bacterial consortia (CMS, GMS and GMSS) were isolated from environmental samples from the Santos Estuarine System (SES) and were able to grow on diethyl-phthalate (DEP) as an only carbon source. From the GMSS consortium, three different strains were isolated and identified as Burkholderia cepacia, Pseudomonas koreensis and Ralstonia pickettii by molecular and mass spectrometry (MALDI-TOF-Biotyper) techniques. Considering there are no reports about Ralstonia genus on phthalates degradation, this strain was chosen to proceed the kinetics experiments. Ralstonia pickettii revealed a great ability to degrade DEP (300 mg/L) in less than 24 h. This is the first report implicating R. pickettii in DEP degradation.
Collapse
Affiliation(s)
- Elen Aquino Perpetuo
- The Interunits Graduate Program in Biotechnology, Universidade de São Paulo, São Paulo, Brazil. .,Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil. .,Institute of Marine Sciences, Universidade Federal de São Paulo, IMar-UNIFESP, Av. Carvalho de Mendonça, 144, Santos, SP, Brazil.
| | | | - Bruno Karolski
- Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil
| | - Claudio Augusto Oller do Nascimento
- Environmental Research and Education Center, Universidade de São Paulo, CEPEMA-POLI-USP, Rod. Conego Domenico Rangoni, 270 km, Cubatão, SP, Brazil.,Chemical Engineering Department, Universidade de São Paulo, POLI-USP, Av. Lineu Prestes, 580, São Paulo, SP, Brazil
| |
Collapse
|
5
|
Wang W, Wang L, Shao Z. Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl Environ Microbiol 2018; 84:AEM.01261-18. [PMID: 30171002 PMCID: PMC6193391 DOI: 10.1128/aem.01261-18 10.1016/j.biotechadv.2015.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/19/2018] [Indexed: 06/12/2023] Open
Abstract
Bacteria play an important role in the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted environments. In marine environments, Cycloclasticus is one of the most prevalent PAH-degrading bacterial genera. However, little is known regarding the degradation mechanisms for multiple PAHs by CycloclasticusCycloclasticus sp. strain P1 was isolated from deep-sea sediments and is known to degrade naphthalene, phenanthrene, pyrene, and other aromatic hydrocarbons. Here, six ring-hydroxylating dioxygenases (RHDs) were identified in the complete genome of Cycloclasticus sp. P1 and were confirmed to be involved in PAH degradation by enzymatic assays. Further, five gene clusters in its genome were identified to be responsible for PAH degradation. Degradation pathways for naphthalene, phenanthrene, and pyrene were elucidated in Cycloclasticus sp. P1 based on genomic and transcriptomic analysis and characterization of an interconnected metabolic network. The metabolic pathway overlaps in many steps in the degradation of pyrene, phenanthrene, and naphthalene, which were validated by the detection of metabolic intermediates in cultures. This study describes a pyrene degradation pathway for Cycloclasticus. Moreover, the study represents the integration of a PAH metabolic network that comprises pyrene, phenanthrene, and naphthalene degradation pathways. Taken together, these results provide a comprehensive investigation of PAH metabolism in CycloclasticusIMPORTANCE PAHs are ubiquitous in the environment and are carcinogenic compounds and tend to accumulate in food chains due to their low bioavailability and poor biodegradability. Cycloclasticus is an obligate marine PAH degrader and is widespread in marine environments, while the PAH degradation pathways remain unclear. In this report, the degradation pathways for naphthalene, phenanthrene, and pyrene were revealed, and an integrated PAH metabolic network covering pyrene, phenanthrene, and naphthalene was constructed in Cycloclasticus This overlapping network provides streamlined processing of PAHs to intermediates and ultimately to complete mineralization. Furthermore, these results provide an additional context for the prevalence of Cycloclasticus in oil-polluted marine environments and pelagic settings. In conclusion, these analyses provide a useful framework for understanding the cellular processes involved in PAH metabolism in an ecologically important marine bacterium.
Collapse
Affiliation(s)
- Wanpeng Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Lin Wang
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
| | - Zongze Shao
- Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, SOA, Xiamen, China
- Xiamen Key Laboratory of Marine Genetic Resources, State Key Laboratory Breeding Base, Xiamen, China
- Fujian Key Laboratory of Marine Genetic Resources, Xiamen, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
6
|
Polycyclic Aromatic Hydrocarbon (PAH) Degradation Pathways of the Obligate Marine PAH Degrader Cycloclasticus sp. Strain P1. Appl Environ Microbiol 2018; 84:AEM.01261-18. [PMID: 30171002 DOI: 10.1128/aem.01261-18] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/19/2018] [Indexed: 12/13/2022] Open
Abstract
Bacteria play an important role in the removal of polycyclic aromatic hydrocarbons (PAHs) from polluted environments. In marine environments, Cycloclasticus is one of the most prevalent PAH-degrading bacterial genera. However, little is known regarding the degradation mechanisms for multiple PAHs by Cycloclasticus Cycloclasticus sp. strain P1 was isolated from deep-sea sediments and is known to degrade naphthalene, phenanthrene, pyrene, and other aromatic hydrocarbons. Here, six ring-hydroxylating dioxygenases (RHDs) were identified in the complete genome of Cycloclasticus sp. P1 and were confirmed to be involved in PAH degradation by enzymatic assays. Further, five gene clusters in its genome were identified to be responsible for PAH degradation. Degradation pathways for naphthalene, phenanthrene, and pyrene were elucidated in Cycloclasticus sp. P1 based on genomic and transcriptomic analysis and characterization of an interconnected metabolic network. The metabolic pathway overlaps in many steps in the degradation of pyrene, phenanthrene, and naphthalene, which were validated by the detection of metabolic intermediates in cultures. This study describes a pyrene degradation pathway for Cycloclasticus. Moreover, the study represents the integration of a PAH metabolic network that comprises pyrene, phenanthrene, and naphthalene degradation pathways. Taken together, these results provide a comprehensive investigation of PAH metabolism in Cycloclasticus IMPORTANCE PAHs are ubiquitous in the environment and are carcinogenic compounds and tend to accumulate in food chains due to their low bioavailability and poor biodegradability. Cycloclasticus is an obligate marine PAH degrader and is widespread in marine environments, while the PAH degradation pathways remain unclear. In this report, the degradation pathways for naphthalene, phenanthrene, and pyrene were revealed, and an integrated PAH metabolic network covering pyrene, phenanthrene, and naphthalene was constructed in Cycloclasticus This overlapping network provides streamlined processing of PAHs to intermediates and ultimately to complete mineralization. Furthermore, these results provide an additional context for the prevalence of Cycloclasticus in oil-polluted marine environments and pelagic settings. In conclusion, these analyses provide a useful framework for understanding the cellular processes involved in PAH metabolism in an ecologically important marine bacterium.
Collapse
|
7
|
Zhu F, Zhu C, Doyle E, Liu H, Zhou D, Gao J. Fate of di (2‑ethylhexyl) phthalate in different soils and associated bacterial community changes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:460-469. [PMID: 29754081 DOI: 10.1016/j.scitotenv.2018.05.055] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Di (2‑ethylhexyl) phthalate (DEHP) is a ubiquitous organic pollutant, which has caused considerable pollution in arable soils. In this study, the relationship between DEHP degradation potential and soil properties in 12 agricultural soils (S1-S12) was examined in a microcosm based experiment. Six of these soils were then selected to monitor patterns in bacterial community responses. It was found that DEHP degradation was positively correlated with bacterial counts in the original soils, suggesting a key role for bacteria in degradation. However, DEHP metabolism did not always lead to complete degradation. Its monoester metabolite, mono (2‑ethylhexyl) phthalate (MEHP), was present at appreciable levels in the two acidic soils (S1 and S2) during the incubation period of 35 days. Based on high-throughput sequencing data, we observed a greater impact of DEHP contamination on bacterial community structure in acidic soils than in the other soils. Nocardioides, Ramlibacter and unclassified Sphingomonadaceae were enriched in the two near-neutral soils where degradation was highest (S4 and S7), suggesting that these organisms might be efficient degraders. The relative abundance of Tumibacillus was greatly reduced in 50% of the six soils examined, demonstrating a high sensitivity to DEHP contamination. Furthermore, putative organic-matter decomposing bacteria (including Tumebacillus and other bacteria taxa such as members from Micromonosporaceae) were greatly reduced in the two acidic soils (S1 and S2), possibly due to the accumulation of MEHP. These results suggest a crucial role of soil acidity in determining the fate and impact of DEHP in soil ecosystems, which deserves further investigation. This work contributes to a better understanding of the environmental behavior of DEHP in soil and should facilitate the development of appropriate remediation technologies.
Collapse
Affiliation(s)
- Fengxiao Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Changyin Zhu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Evelyn Doyle
- Environmental Microbiology Group, School of Biology and Environmental Science and Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Hailong Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Dongmei Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China
| | - Juan Gao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, PR China.
| |
Collapse
|
8
|
Jones MD, Rodgers-Vieira EA, Hu J, Aitken MD. Association of Growth Substrates and Bacterial Genera with Benzo[ a]pyrene Mineralization in Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2014; 31:689-697. [PMID: 25469077 PMCID: PMC4245834 DOI: 10.1089/ees.2014.0275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization.
Collapse
Affiliation(s)
- Maiysha D. Jones
- Present Address: The Procter & Gamble Company, Mason Business Center, 8700 S. Mason Montgomery Road, Mason, OH 45040. Phone:+1-513-622-5592; E-mail:
| | | | - Jing Hu
- Present Address: The Dow Chemical Company, 1803 Building, Midland, MI 48674. Phone:+1-989-638-4847; E-mail:
| | | |
Collapse
|
9
|
Dunlevy SR, Singleton DR, Aitken MD. Biostimulation Reveals Functional Redundancy of Anthracene-Degrading Bacteria in Polycyclic Aromatic Hydrocarbon-Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2013; 30:697-705. [PMID: 24302851 PMCID: PMC3833303 DOI: 10.1089/ees.2013.0067] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/28/2013] [Indexed: 05/25/2023]
Abstract
Stable-isotope probing was previously used to identify bacterial anthracene-degraders in untreated soil from a former manufactured gas plant site. However, subsequent pyrosequence analyses of total bacterial communities and quantification of 16S rRNA genes indicated that relative abundances of the predominant anthracene-degrading bacteria (designated Anthracene Group 1) diminished as a result of biological treatment conditions in lab-scale, aerobic bioreactors. This study identified Alphaproteobacterial anthracene-degrading bacteria in bioreactor-treated soil which were dissimilar to those previously identified. The largest group of sequences was from the Alterythrobacter genus while other groups of sequences were associated with bacteria within the order Rhizobiales and the genus Bradyrhizobium. Conditions in the bioreactor enriched for organisms capable of degrading anthracene which were not the same as those identified as dominant degraders in the untreated soil. Further, these data suggest that identification of polycyclic aromatic hydrocarbon-degrading bacteria in contaminated but untreated soil may be a poor indicator of the most active degraders during biological treatment.
Collapse
Affiliation(s)
| | - David R. Singleton
- Corresponding author: David R. Singleton, Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Room 0030 Michael Hooker Research Center, Chapel Hill, NC 27599-7431. Phone: 1-919-966-5452; Fax: 1-919-966-7911; E-mail:
| | | |
Collapse
|
10
|
Heterologous expression of polycyclic aromatic hydrocarbon ring-hydroxylating dioxygenase genes from a novel pyrene-degrading betaproteobacterium. Appl Environ Microbiol 2012; 78:3552-9. [PMID: 22427500 DOI: 10.1128/aem.00173-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A betaproteobacterium within the family Rhodocyclaceae previously identified as a pyrene degrader via stable-isotope probing (SIP) of contaminated soil (designated pyrene group 1 or PG1) was cultivated as the dominant member of a mixed bacterial culture. A metagenomic library was constructed, and the largest contigs were analyzed for genes associated with polycyclic aromatic hydrocarbon (PAH) metabolism. Eight pairs of genes with similarity to the α- and β-subunits of ring-hydroxylating dioxygenases (RHDs) associated with aerobic bacterial PAH degradation were identified and linked to PG1 through PCR analyses of a simplified enrichment culture. In tandem with a ferredoxin and reductase found in close proximity to one pair of RHD genes, six of the RHDs were cloned and expressed in Escherichia coli. Each cloned RHD was tested for activity against nine PAHs ranging in size from two to five rings. Despite differences in their predicted protein sequences, each of the six RHDs was capable of transforming phenanthrene and pyrene. Three RHDs could additionally transform naphthalene and fluorene, and these genotypes were also associated with the ability of the E. coli constructs to convert indole to indigo. Only one of the six cloned RHDs was capable of transforming anthracene and benz[a]anthracene. None of the tested RHDs were capable of significantly transforming fluoranthene, chrysene, or benzo[a]pyrene.
Collapse
|
11
|
Stable isotope probing of an algal bloom to identify uncultivated members of the Rhodobacteraceae associated with low-molecular-weight polycyclic aromatic hydrocarbon degradation. Appl Environ Microbiol 2011; 77:7856-60. [PMID: 21926219 DOI: 10.1128/aem.06200-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH)-degrading bacteria associated with an algal bloom in Tampa Bay, FL, were investigated by stable isotope probing (SIP) with uniformly labeled [¹³C]naphthalene. The dominant sequences in clone libraries constructed from ¹³C-enriched bacterial DNA (from naphthalene enrichments) were identified as uncharacterized members of the family Rhodobacteraceae. Quantitative PCR primers targeting the 16S rRNA gene of these uncultivated organisms were used to determine their abundance in incubations amended with unlabeled naphthalene and phenanthrene, both of which showed substantial increases in gene copy numbers during the experiments. As demonstrated by this work, the application of uniformly ¹³C-labeled PAHs in SIP experiments can successfully be used to identify novel PAH-degrading bacteria in marine waters.
Collapse
|
12
|
Jones MD, Crandell DW, Singleton DR, Aitken MD. Stable-isotope probing of the polycyclic aromatic hydrocarbon-degrading bacterial guild in a contaminated soil. Environ Microbiol 2011; 13:2623-32. [PMID: 21564459 DOI: 10.1111/j.1462-2920.2011.02501.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The bacteria responsible for the degradation of naphthalene, phenanthrene, pyrene, fluoranthene or benz[a]anthracene in a polycyclic aromatic hydrocarbon (PAH)-contaminated soil were investigated by DNA-based stable-isotope probing (SIP). Clone libraries of 16S rRNA genes were generated from the (13) C-enriched ('heavy') DNA recovered from each SIP experiment, and quantitative PCR primers targeting the 16S rRNA gene were developed to measure the abundances of many of the SIP-identified sequences. Clone libraries from the SIP experiments with naphthalene, phenanthrene and fluoranthene primarily contained sequences related to bacteria previously associated with the degradation of those compounds. However, Pigmentiphaga-related sequences were newly associated with naphthalene and phenanthrene degradation, and sequences from a group of uncultivated γ-Proteobacteria known as Pyrene Group 2 were newly associated with fluoranthene and benz[a]anthracene degradation. Pyrene Group 2-related sequences were the only sequences recovered from the clone library generated from SIP with pyrene, and they were 82% of the sequences recovered from the clone library generated from SIP with benz[a]anthracene. In time-course experiments with each substrate in unlabelled form, the abundance of each of the measured groups increased in response to the corresponding substrate. These results provide a comprehensive description of the microbial ecology of a PAH-contaminated soil as it relates to the biodegradation of PAHs from two to four rings, and they underscore that bacteria in Pyrene Group 2 are well-suited for the degradation of four-ring PAHs.
Collapse
Affiliation(s)
- Maiysha D Jones
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, CB #7431 Chapel Hill, NC 27599-7431, USA.
| | | | | | | |
Collapse
|
13
|
Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O. Bioremediation of tributyltin contaminated sediment: degradation enhancement and improvement of bioavailability to promote treatment processes. CHEMOSPHERE 2011; 83:680-686. [PMID: 21396676 DOI: 10.1016/j.chemosphere.2011.02.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 02/10/2011] [Accepted: 02/10/2011] [Indexed: 05/30/2023]
Abstract
Bioremediation of tributyltin (TBT) contaminated sediment was studied and degradation enhancement and improvement of bioavailability were also investigated. In TBT spiked sediment, the half-life of TBT in the control sample, representing natural attenuation, was 578 d indicating its persistence. In the stimulated sample (pH 7.5, aeration and incubated at 28°C), the half-life was significantly reduced to 11 d. Further stimulation by nutrient addition (succinate, glycerol and l-arginine) or inoculation with Enterobacter cloacae (∼10(7) viable cells g(-1) of sediment) resulted in half-life reduction to 9 and 10d, respectively. In non-spiked sediment, the indigenous microorganisms were able to degrade aged TBT, but the extended period of contamination decreased the degradation efficiency. To improve bioavailability, addition of surfactant, adjustment of salinity and sonication were studied. The highest percentage solubilisation of TBT in water was obtained by adjusting salinity to 20 psu, which increased the solubility of TBT from 13% to 33%. Half-lives after bioavailability was improved were 5, 4 and 4d for stimulation, stimulation w/nutrient addition and stimulation w/inoculation, respectively. However, natural attenuation in the control sample was not enhanced. The results show that providing suitable conditions is important in enhancing TBT biodegradation, and bioavailability improvement additionally increased the rate and degraded amount of TBT. Unfortunately, nutrient addition and inoculation of the degrader did not enhance the degradation appreciably.
Collapse
Affiliation(s)
- A Sakultantimetha
- David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, Glasgow, Scotland G1 1QE, UK.
| | | | | | | | | |
Collapse
|
14
|
Multiple DNA extractions coupled with stable-isotope probing of anthracene-degrading bacteria in contaminated soil. Appl Environ Microbiol 2011; 77:2984-91. [PMID: 21398486 DOI: 10.1128/aem.01942-10] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In many of the DNA-based stable-isotope probing (SIP) studies published to date in which soil communities were investigated, a single DNA extraction was performed on the soil sample, usually using a commercial DNA extraction kit, prior to recovering the (13)C-labeled (heavy) DNA by density-gradient ultracentrifugation. Recent evidence suggests, however, that a single extraction of a soil sample may not lead to representative recovery of DNA from all of the organisms in the sample. To determine whether multiple DNA extractions would affect the DNA yield, the eubacterial 16S rRNA gene copy number, or the identification of anthracene-degrading bacteria, we performed seven successive DNA extractions on the same aliquot of contaminated soil either untreated or enriched with [U-(13)C]anthracene. Multiple extractions were necessary to maximize the DNA yield and 16S rRNA gene copy number from both untreated and anthracene-enriched soil samples. Sequences within the order Sphingomonadales, but unrelated to any previously described genus, dominated the 16S rRNA gene clone libraries derived from (13)C-enriched DNA and were designated "anthracene group 1." Sequences clustering with Variovorax spp., which were also highly represented, and sequences related to the genus Pigmentiphaga were newly associated with anthracene degradation. The bacterial groups collectively identified across all seven extracts were all recovered in the first extract, although quantitative PCR analysis of SIP-identified groups revealed quantitative differences in extraction patterns. These results suggest that performing multiple DNA extractions on soil samples improves the extractable DNA yield and the number of quantifiable eubacterial 16S rRNA gene copies but have little qualitative effect on the identification of the bacterial groups associated with the degradation of a given carbon source by SIP.
Collapse
|
15
|
Singleton DR, Richardson SD, Aitken MD. Pyrosequence analysis of bacterial communities in aerobic bioreactors treating polycyclic aromatic hydrocarbon-contaminated soil. Biodegradation 2011; 22:1061-73. [PMID: 21369833 DOI: 10.1007/s10532-011-9463-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 02/21/2011] [Indexed: 10/18/2022]
Abstract
Two aerobic, lab-scale, slurry-phase bioreactors were used to examine the biodegradation of polycyclic aromatic hydrocarbons (PAHs) in contaminated soil and the associated bacterial communities. The two bioreactors were operated under semi-continuous (draw-and-fill) conditions at a residence time of 35 days, but one was fed weekly and the other monthly. Most of the quantified PAHs, including high-molecular-weight compounds, were removed to a greater extent in the weekly-fed bioreactor, which achieved total PAH removal of 76%. Molecular analyses, including pyrosequencing of 16S rRNA genes, revealed significant shifts in the soil bacterial communities after introduction to the bioreactors and differences in the abundance and types of bacteria in each of the bioreactors. The weekly-fed bioreactor displayed a more stable bacterial community with gradual changes over time, whereas the monthly-fed bioreactor community was less consistent and may have been more strongly influenced by the influx of untreated soil during feeding. Phylogenetic groups containing known PAH-degrading bacteria previously identified through stable-isotope probing of the untreated soil were differentially affected by bioreactor conditions. Sequences from members of the Acidovorax and Sphingomonas genera, as well as the uncultivated "Pyrene Group 2" were abundant in the bioreactors. However, the relative abundances of sequences from the Pseudomonas, Sphingobium, and Pseudoxanthomonas genera, as well as from a group of unclassified anthracene degraders, were much lower in the bioreactors compared to the untreated soil.
Collapse
Affiliation(s)
- David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC 27599-7431, USA.
| | | | | |
Collapse
|
16
|
Richardson SD, Lebron BL, Miller CT, Aitken MD. Recovery of phenanthrene-degrading bacteria after simulated in situ persulfate oxidation in contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:719-25. [PMID: 21162560 PMCID: PMC3021091 DOI: 10.1021/es102420r] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A continuous-flow column study was conducted to investigate the long-term effects of persulfate oxidation on the abundance and activity of the indigenous microbial community and phenanthrene-degrading bacteria in contaminated soil from a former manufactured gas plant (MGP) site. Approximately six pore volumes of a 20 g/L persulfate solution were introduced into the column, followed by simulated groundwater for 500 days. Soil samples were collected from the surface of the soil bed and along the column length immediately before and after persulfate injection and up to 500 days following injection. Exposure to persulfate led to a 2- to 3-log reduction in total bacterial 16S rRNA genes, severe inhibition of (14)C-acetate mineralization (as a measure of general microbial activity), and a decrease in community diversity. However, relatively rapid recovery of both bacterial gene abundance and activity was observed within 30 days after persulfate exposure. Mineralization of (14)C-phenanthrene was also inhibited but did not recover until 100 days postoxidation. Known phenanthrene-degrading bacterial groups decreased to below detection limits throughout the column, with recovery times from 100 to 500 days after persulfate injection. These findings suggest that coupling biological processes with persulfate oxidation is possible, although recovery of specific contaminant degraders may occur much later than the general microbial community recovers. Furthermore, the use of total bacterial quantity or nonspecific measures of activity as a surrogate for the recovery of contaminant degraders may be inappropriate for evaluating the compatibility of chemical treatment with subsequent bioremediation.
Collapse
|
17
|
Fernández-Luqueño F, Valenzuela-Encinas C, Marsch R, Martínez-Suárez C, Vázquez-Núñez E, Dendooven L. Microbial communities to mitigate contamination of PAHs in soil--possibilities and challenges: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:12-30. [PMID: 20623198 DOI: 10.1007/s11356-010-0371-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Accepted: 06/23/2010] [Indexed: 05/26/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Although highly diverse and specialized prokaryotic and eukaryotic microbial communities in soil degrade polycyclic aromatic hydrocarbons (PAHs), most of these are removed slowly. This review will discuss the biotechnological possibilities to increase the microbial dissipation of PAHs from soil as well as the main biological and biotechnological challenges. DISCUSSION AND CONCLUSIONS Microorganism provides effective and economically feasible solutions for soil cleanup and restoration. However, when the PAHs contamination is greater than the microbial ability to dissipate them, then applying genetically modified microorganisms might help to remove the contaminant. Nevertheless, it is necessary to have a more holistic review of the different individual reactions that are simultaneously taking place in a microbial cell and of the interactions microorganism-microorganism, microorganism-plant, microorganism-soil, and microorganisms-PAHs. PERSPECTIVES Elucidating the function of genes from the PAHs-polluted soil and the study in pure cultures of isolated PAHs-degrading organisms as well as the generation of microorganisms in the laboratory that will accelerate the dissipation of PAHs and their safe application in situ have not been studied extensively. There is a latent environmental risk when genetically engineered microorganisms are used to remedy PAHs-contaminated soil.
Collapse
Affiliation(s)
- F Fernández-Luqueño
- Renewable Energy Engineering, Universidad Tecnológica de Tulancingo, Tulancingo, Hidalgo 43642, México.
| | | | | | | | | | | |
Collapse
|
18
|
Sakultantimetha A, Keenan HE, Beattie TK, Bangkedphol S, Cavoura O. Effects of organic nutrients and growth factors on biostimulation of tributyltin removal by sediment microorganisms and Enterobacter cloacae. Appl Microbiol Biotechnol 2010; 90:353-60. [DOI: 10.1007/s00253-010-3023-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/30/2022]
|
19
|
Zhu H, Singleton D, Aitken MD. Effects of nonionic surfactant addition on populations of polycyclic aromatic hydrocarbon-degrading bacteria in a bioreactor treating contaminated soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:7266-71. [PMID: 20707373 PMCID: PMC2947603 DOI: 10.1021/es100114g] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We studied the effects of two polyethoxylated nonionic surfactants, Brij 30 and C(12)E(8), on populations of polycyclic aromatic hydrocarbon- (PAH-) degrading bacteria from a bioreactor treating PAH-contaminated soil. Each surfactant was evaluated at doses that corresponded to aqueous-phase concentrations both above and below the critical micelle concentration (CMC) after mixing with reactor slurry. Real-time quantitative PCR was used to quantify 16S rRNA (rRNA) gene sequences representing degraders of salicylate, naphthalene, phenanthrene, or pyrene previously identified in the bioreactor community by stable-isotope probing. Sequences representing two groups of organisms associated with degradation of naphthalene and/or salicylate in the bioreactor increased in abundance by more than an order of magnitude after incubation with either surfactant at each dose tested. In contrast, the abundance of a group of uncultivated pyrene-degrading bacteria, whose relative abundance in the soil without surfactant addition was up to 9% of the total 16S rRNA genes, decreased by an order of magnitude or more in the presence of each surfactant at each dose. These results indicate that surfactant addition can have substantial, differential effects on populations of organisms responsible for contaminant degradation within a microbial community.
Collapse
|
20
|
Bengtsson G, Törneman N, Yang X. Spatial uncoupling of biodegradation, soil respiration, and PAH concentration in a creosote contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:2865-2871. [PMID: 20630638 DOI: 10.1016/j.envpol.2010.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 05/12/2010] [Accepted: 06/12/2010] [Indexed: 05/29/2023]
Abstract
Hotspots and coldspots of concentration and biodegradation of polycyclic aromatic hydrocarbons (PAHs) marginally overlapped at the 0.5-100 m scale in a creosote contaminated soil in southern Sweden, suggesting that concentration and biodegradation had little spatial co-variation. Biodegradation was substantial and its spatial variability considerable and highly irregular, but it had no spatial autocorrelation. The soil concentration of PAHs explained only 20-30% of the variance of their biodegradation. Soil respiration was spatially autocorrelated. The spatial uncoupling between biodegradation and soil respiration seemed to be governed by the aging of PAHs in the soil, since biodegradation of added 13C phenanthrene covaried with both soil respiration and microbial biomass. The latter two were also correlated with high concentrations of phospholipid fatty acids (PLFAs) that are common in gram-negative bacteria. However, several of the hotspots of biodegradation coincided with hotspots for the distribution of a PLFA indicative of fungal biomass.
Collapse
Affiliation(s)
- Göran Bengtsson
- Lund University, Department of Ecology, Sölvegatan 37, SE-223 62 Lund, Sweden.
| | | | | |
Collapse
|
21
|
Kanaly RA, Harayama S. Advances in the field of high-molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol 2010; 3:136-64. [PMID: 21255317 PMCID: PMC3836582 DOI: 10.1111/j.1751-7915.2009.00130.x] [Citation(s) in RCA: 143] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/22/2009] [Accepted: 05/26/2009] [Indexed: 11/26/2022] Open
Abstract
Interest in understanding prokaryotic biotransformation of high-molecular-weight polycyclic aromatic hydrocarbons (HMW PAHs) has continued to grow and the scientific literature shows that studies in this field are originating from research groups from many different locations throughout the world. In the last 10 years, research in regard to HMW PAH biodegradation by bacteria has been further advanced through the documentation of new isolates that represent diverse bacterial types that have been isolated from different environments and that possess different metabolic capabilities. This has occurred in addition to the continuation of in-depth comprehensive characterizations of previously isolated organisms, such as Mycobacterium vanbaalenii PYR-1. New metabolites derived from prokaryotic biodegradation of four- and five-ring PAHs have been characterized, our knowledge of the enzymes involved in these transformations has been advanced and HMW PAH biodegradation pathways have been further developed, expanded upon and refined. At the same time, investigation of prokaryotic consortia has furthered our understanding of the capabilities of microorganisms functioning as communities during HMW PAH biodegradation.
Collapse
Affiliation(s)
- Robert A Kanaly
- Department of Genome Systems, Faculty of Bionanoscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Kanagawa-ken, Yokohama 236-0027, Japan.
| | | |
Collapse
|