1
|
Das P, Umesh, Barbora L, Moholkar VS. Comparative analysis of biodesulfurization of dibenzothiophene (DBT) and 4,6-dimethyl dibenzothiophene (4,6-DMDBT) by 4S pathway using molecular simulations. Prep Biochem Biotechnol 2025:1-17. [PMID: 39748703 DOI: 10.1080/10826068.2024.2448183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
In this paper, we have analyzed biodesulfurization of dibenzothiophene (DBT) and 4,6-dibenzothiophene (4,6-DMDBT) by 4S metabolic pathway using molecular simulations. Docking analysis revealed lower binding energies and inhibition constants (Ki) for 4,6-DMDBT and its metabolic intermediates with DSZ enzymes than DBT and its intermediates. The complexes of substrate and its metabolites with DSZ enzymes had higher stability for 4,6-DMDBT than DBT owing to lower RMSF values than apoprotein. The docking analysis revealed affinity of the inhibitors HBPS and HBP (for DBT) and DMHBPS and DMHBP (for 4,6-DMDBT) toward DSZ enzyme due to negative binding energies. Molecular dynamics simulations showed stability of several enzyme-inhibitor complexes. The inhibitory effect of DMHBPS on DSZC enzyme (Ki = 1.53 µM) and DMHBP on DSZB enzyme (Ki = 3.87 µM) was most marked. The inhibitory effect of HBP on DSZC and DSZB enzymes was moderate due to Ki of 6.36 and 7.93 µM, respectively. The inhibition effect of DMHBP on the DSZA enzyme was insignificant due to high Ki of 53.6 µM. In summary, higher stability of enzyme-substrate complexes and strong inhibition by DMHBPS and DMHBP (due to very low Ki) contribute to slower biodesulfurization of 4,6-DMDBT as compared to DBT.
Collapse
Affiliation(s)
- Pushpita Das
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Umesh
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Lepakshi Barbora
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| | - Vijayanand Suryakant Moholkar
- School of Energy Science and Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
- Department of Chemical Engineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India
| |
Collapse
|
2
|
Sadare OO, Daramola MO. Bio-catalytic degradation of dibenzothiophene (DBT) in petroleum distillate (diesel) by Pseudomonas spp. Sci Rep 2023; 13:6020. [PMID: 37055435 PMCID: PMC10102322 DOI: 10.1038/s41598-023-31951-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023] Open
Abstract
Biodesulfurization (BDS) was employed in this study to degrade dibenzothiophene (DBT) which accounts for 70% of the sulfur compounds in diesel using a synthetic and typical South African diesel in the aqueous and biphasic medium. Two Pseudomonas sp. bacteria namely Pseudomonas aeruginosa and Pseudomonas putida were used as biocatalysts. The desulfurization pathways of DBT by the two bacteria were determined by gas chromatography (GC)/mass spectrometry (MS) and High-Performance Liquid Chromatography (HPLC). Both organisms were found to produce 2-hydroxy biphenyl, the desulfurized product of DBT. Results showed BDS performance of 67.53% and 50.02%, by Pseudomonas aeruginosa and Pseudomonas putida, respectively for 500 ppm initial DBT concentration. In order to study the desulfurization of diesel oils obtained from an oil refinery, resting cells studies by Pseudomonas aeruginosa were carried out which showed a decrease of about 30% and 70.54% DBT removal for 5200 ppm in hydrodesulfurization (HDS) feed diesel and 120 ppm in HDS outlet diesel, respectively. Pseudomonas aeruginosa and Pseudomonas putida selectively degraded DBT to form 2-HBP. Application of these bacteria for the desulfurization of diesel showed promising potential for decreasing the sulfur content of South African diesel oil.
Collapse
Affiliation(s)
- Olawumi Oluwafolakemi Sadare
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| | - Michael Olawale Daramola
- Department of Chemical Engineering, Faculty of Engineering, Built Environment and Information Technology, University of Pretoria, Hatfield, Pretoria, 0028, South Africa.
| |
Collapse
|
3
|
Duval E, Cravo-Laureau C, Poinel L, Duran R. Development of molecular driven screening for desulfurizing microorganisms targeting the dszB desulfinase gene. Res Microbiol 2021; 172:103872. [PMID: 34375709 DOI: 10.1016/j.resmic.2021.103872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
COnsensus DEgenerate Hybrid Oligonucleotide Primers (CODEHOP) were developed for the detection of the dszB desulfinase gene (2'-hydroxybiphenyl-2-sulfinate desulfinase; EC 3.13.1.3) by polymerase chain reaction (PCR), which allow to reveal larger diversity than traditional primers. The new developed primers were used as molecular monitoring tool to drive a procedure for the isolation of desulfurizing microorganisms. The primers revealed a large dszB gene diversity in environmental samples, particularly in diesel-contaminated soil that served as inoculum for enrichment cultures. The isolation procedure using the dibenzothiophene sulfone (DBTO2) as sole sulfur source reduced drastically the dszB gene diversity. A dszB gene closely related to that carried by Gordonia species was selected. The desulfurization activity was confirmed by the production of desulfurized 2-hydroxybiphenyl (2-HBP). Metagenomic 16S rRNA gene sequencing showed that the Gordonia genus was represented at low abundance in the initial bacterial community. Such observation highlighted that the culture medium and conditions represent the bottleneck for isolating novel desulfurizing microorganisms. The new developed primers constitute useful tool for the development of appropriate cultural-dependent procedures, including medium and culture conditions, to access novel desulfurizing microorganisms useful for the petroleum industry.
Collapse
Affiliation(s)
- Emmanuel Duval
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France; Segula Technologies, 71 rue Henri Gautier, 44550, Montoir de Bretagne, France.
| | - Cristiana Cravo-Laureau
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France.
| | - Line Poinel
- Segula Technologies, 71 rue Henri Gautier, 44550, Montoir de Bretagne, France.
| | - Robert Duran
- Université de Pau et des Pays de l'Adour, E2S UPPA, IPREM UMR, CNRS 5254, Bat. IBEAS, Pau, France.
| |
Collapse
|
4
|
Pátek M, Grulich M, Nešvera J. Stress response in Rhodococcus strains. Biotechnol Adv 2021; 53:107698. [PMID: 33515672 DOI: 10.1016/j.biotechadv.2021.107698] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 12/13/2022]
Abstract
Rhodococci are bacteria which can survive under various extreme conditions, in the presence of toxic compounds, and in other hostile habitats. Their tolerance of unfavorable conditions is associated with the structure of their cell wall and their large array of enzymes, which degrade or detoxify harmful compounds. Their physiological and biotechnological properties, together with tools for their genetic manipulation, enable us to apply them in biotransformations, biodegradation and bioremediation. Many such biotechnological applications cause stresses that positively or negatively affect their efficiency. Whereas numerous reviews on rhodococci described their enzyme activities, the optimization of degradation or production processes, and corresponding technological solutions, only a few reviews discussed some specific effects of stresses on the physiology of rhodococci and biotechnological processes. This review aims to comprehensively describe individual stress responses in Rhodococcus strains, the interconnection of different types of stresses and their consequences for cell physiology. We examine here the responses to (1) environmental stresses (desiccation, heat, cold, osmotic and pH stress), (2) the presence of stress-inducing compounds (metals, organic compounds and antibiotics) in the environment (3) starvation and (4) stresses encountered during biotechnological applications. Adaptations of the cell envelope, the formation of multicellular structures and stresses induced by the interactions of hosts with pathogenic rhodococci are also included. The roles of sigma factors of RNA polymerase in the global regulation of stress responses in rhodococci are described as well. Although the review covers a large number of stressful conditions, our intention was to provide an overview of the selected stress responses and their possible connection to biotechnological processes, not an exhaustive survey of the scientific literature. The findings on stress responses summarized in this review and the demonstration of gaps in current knowledge may motivate researchers working to fill these gaps.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Michal Grulich
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| | - Jan Nešvera
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic.
| |
Collapse
|
5
|
Dejaloud A, Habibi A, Vahabzadeh F. DBT desulfurization by Rhodococcus erythropolis PTCC 1767 in aqueous and biphasic systems. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01191-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Yu Y, Mills LC, Englert DL, Payne CM. Inhibition Mechanisms of Rhodococcus Erythropolis 2′-Hydroxybiphenyl-2-sulfinate Desulfinase (DszB). J Phys Chem B 2019; 123:9054-9065. [DOI: 10.1021/acs.jpcb.9b05252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yue Yu
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Landon C. Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| | - Derek L. Englert
- Department of Chemical and Materials Engineering, University of Kentucky, Paducah, Kentucky, United States
| | - Christina M. Payne
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
7
|
Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene. Bioprocess Biosyst Eng 2017; 40:969-980. [PMID: 28341912 DOI: 10.1007/s00449-017-1760-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 03/10/2017] [Indexed: 10/19/2022]
Abstract
The potential of Ralstonia eutropha as a biocatalyst for desulfurization of dibenzothiophene (DBT) was studied in growing and resting cell conditions. The results of both conditions showed that sulfur was removed from DBT which accompanied by the formation of 2-hydroxybiphenyl (2-HBP). In growing cell experiments, glucose was used as an energy supplying substrate in initial concentrations of 55 mM (energy-limited) and 111 mM (energy-sufficient). The growing cell behaviors were quantitatively described using the logistic equation and maintenance concept. The results indicated that 2-HBP production was higher for the energy-sufficient cultures, while the values of the specific growth rate and the maintenance coefficient for these media were lower than those of the energy-limited cultures. Additionally, the kinetic studies showed that the half-saturation constant for the energy-limited cultures was 2 times higher than the energy-sufficient ones where the inhibition constant (0.08 mM) and the maximum specific DBT desulfurization rate (0.002 mmol gcell-1 h-1) were almost constant. By defining desulfurizing capacity (D DBT) including both the biomass concentration and time to reach a particular percentage of DBT conversion, the best condition for desulfurizing cell was determined at 23% gcell L-1 h-1 which corresponded with the resting cells that were harvested at the mid-exponential growth phase.
Collapse
|
8
|
Yu Y, Fursule IA, Mills LC, Englert DL, Berron BJ, Payne CM. CHARMM force field parameters for 2′-hydroxybiphenyl-2-sulfinate, 2-hydroxybiphenyl, and related analogs. J Mol Graph Model 2017; 72:32-42. [DOI: 10.1016/j.jmgm.2016.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
|
9
|
Kilbane JJ. Biodesulfurization: How to Make it Work? ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2016. [DOI: 10.1007/s13369-016-2269-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Feng S, Yang H, Zhan X, Wang W. Enhancement of dibenzothiophene biodesulfurization by weakening the feedback inhibition effects based on a systematic understanding of the biodesulfurization mechanism by Gordonia sp. through the potential “4S” pathway. RSC Adv 2016. [DOI: 10.1039/c6ra14459d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Gordonia sp. JDZX13 (source: industrial petroleum soil) shows good potential for dibenzothiophene (DBT) biodesulfurization.
Collapse
Affiliation(s)
- Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Hailin Yang
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Xiao Zhan
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| | - Wu Wang
- The Key Laboratory of Industrial Biotechnology
- Ministry of Education
- School of Biotechnology
- Jiangnan University
- Wuxi
| |
Collapse
|
11
|
An Evaluation of Kinetic Models in the Biodesulfurization of Synthetic Oil by Rhodococcus erythropolis ATCC 4277. Appl Biochem Biotechnol 2015. [DOI: 10.1007/s12010-015-1764-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
12
|
Abin-Fuentes A, Mohamed MES, Wang DIC, Prather KLJ. Exploring the mechanism of biocatalyst inhibition in microbial desulfurization. Appl Environ Microbiol 2013; 79:7807-17. [PMID: 24096431 PMCID: PMC3837836 DOI: 10.1128/aem.02696-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 10/02/2013] [Indexed: 11/20/2022] Open
Abstract
Microbial desulfurization, or biodesulfurization (BDS), of fuels is a promising technology because it can desulfurize compounds that are recalcitrant to the current standard technology in the oil industry. One of the obstacles to the commercialization of BDS is the reduction in biocatalyst activity concomitant with the accumulation of the end product, 2-hydroxybiphenyl (HBP), during the process. BDS experiments were performed by incubating Rhodococcus erythropolis IGTS8 resting-cell suspensions with hexadecane at 0.50 (vol/vol) containing 10 mM dibenzothiophene. The resin Dowex Optipore SD-2 was added to the BDS experiments at resin concentrations of 0, 10, or 50 g resin/liter total volume. The HBP concentration within the cytoplasm was estimated to decrease from 1,100 to 260 μM with increasing resin concentration. Despite this finding, productivity did not increase with the resin concentration. This led us to focus on the susceptibility of the desulfurization enzymes toward HBP. Dose-response experiments were performed to identify major inhibitory interactions in the most common BDS pathway, the 4S pathway. HBP was responsible for three of the four major inhibitory interactions identified. The concentrations of HBP that led to a 50% reduction in the enzymes' activities (IC50s) for DszA, DszB, and DszC were measured to be 60 ± 5 μM, 110 ± 10 μM, and 50 ± 5 μM, respectively. The fact that the IC50s for HBP are all significantly lower than the cytoplasmic HBP concentration suggests that the inhibition of the desulfurization enzymes by HBP is responsible for the observed reduction in biocatalyst activity concomitant with HBP generation.
Collapse
Affiliation(s)
- Andres Abin-Fuentes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | | - Daniel I. C. Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
13
|
Abin-Fuentes A, Leung JC, Mohamed MES, Wang DIC, Prather KLJ. Rate-limiting step analysis of the microbial desulfurization of dibenzothiophene in a model oil system. Biotechnol Bioeng 2013; 111:876-84. [PMID: 24284557 DOI: 10.1002/bit.25148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 11/05/2022]
Abstract
A mechanistic analysis of the various mass transport and kinetic steps in the microbial desulfurization of dibenzothiophene (DBT) by Rhodococcus erythropolis IGTS8 in a model biphasic (oil-water), small-scale system was performed. The biocatalyst was distributed into three populations, free cells in the aqueous phase, cell aggregates and oil-adhered cells, and the fraction of cells in each population was measured. The power input per volume (P/V) and the impeller tip speed (vtip ) were identified as key operating parameters in determining whether the system is mass transport controlled or kinetically controlled. Oil-water DBT mass transport was found to not be limiting under the conditions tested. Experimental results at both the 100 mL and 4 L (bioreactor) scales suggest that agitation leading to P/V greater than 10,000 W/ m(3) and/or vtip greater than 0.67 m/s is sufficient to overcome the major mass transport limitation in the system, which was the diffusion of DBT within the biocatalyst aggregates.
Collapse
Affiliation(s)
- Andres Abin-Fuentes
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139
| | | | | | | | | |
Collapse
|
14
|
Metabolic engineering of hydrophobic Rhodococcus opacus for biodesulfurization in oil-water biphasic reaction mixtures. J Biosci Bioeng 2011; 113:360-6. [PMID: 22099375 DOI: 10.1016/j.jbiosc.2011.10.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 10/17/2011] [Accepted: 10/20/2011] [Indexed: 11/19/2022]
Abstract
An organic solvent-tolerant bacterium, Rhodococcus opacus B-4, was metabolically engineered to remove sulfur from dibenzothiophene (DBT), a component of crude oil. The resulting recombinant strain ROD2-8 constitutively expressed the Rhodococcus erythropolis IGTS8 genes dszA, dszB, and dszC, encoding dibenzothiophene sulfone monooxygenase, 2-(2'-hydroxyphenyl) benzenesulfinate desulfinase, and dibenzothiophene monooxygenase, respectively, of the 4S pathway to avoid transcriptional inhibition by the sulfate end-product. Unlike the wild-type strain, ROD2-8 grew in mineral salts medium containing DBT as the sole sulfur source. Under aqueous conditions, ROD2-8 resting cells converted greater than 85% of DBT to 2-hydroxybiphenyl (2-HBP), although the consumption rate by ROD2-8 cells precultured on DBT as the sole sulfur source was 3.3-fold higher than that of cells cultured in complex medium. Notably, DBT consumption rates increased by 80% in oil-water biphasic reaction mixtures with n-hexadecane as the organic solvent, and resting cells were predominantly localized in the emulsion layer. Desulfurization activity in biphasic reaction mixtures increased with increasing concentrations of DBT and was not markedly inhibited by 2-HBP accumulation. Intracellular concentrations of DBT and 2-HBP were significantly lower under biphasic conditions than aqueous conditions. Our findings suggest that the enhanced desulfurization activity under biphasic conditions results from the combined effects of attenuated feedback inhibition and reduced mass transfer limitations due to 2-HBP diffusion from cells and accumulation of both substrate and biocatalyst in the emulsion layer, respectively. Therefore, the solvent-tolerant and hydrophobic bacterium R. opacus B-4 appears suitable for biodesulfurization reactions in solvents containing a minimum ratio of water.
Collapse
|
15
|
C-S targeted biodegradation of dibenzothiophene by Stenotrophomonas sp. NISOC-04. Appl Biochem Biotechnol 2011; 165:938-48. [PMID: 21750993 DOI: 10.1007/s12010-011-9310-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2010] [Accepted: 06/19/2011] [Indexed: 10/18/2022]
Abstract
Crude oil-contaminated soil samples were gathered across Khuzestan oilfields (National Iranian South Oil Company, NISOC) consequently experienced a screening procedure for isolating C-S targeted dibenzothiophene-biodegrading microorganisms with previously optimized techniques. Among the isolates, a bacterial strain was selected due to its capability of biodegrading dibenzothiophene in a C-S targeted manner in aqueous phases and medium mostly consisting of separately biphasic water-gasoline. The 16S rDNA of the isolate was amplified using eubacterial-specific primers and then sequenced. Based on sequence data analysis, the microorganism, designated NISOC-04, clustered most closely with the members of the genus Stenotrophomonas. Gas chromatography indicated that Stenotrophomonas sp. NISOC-04 utilizes 82% of starting 0.8 mM dibenzothiophene within a 48-h-long exponential growth phase. Growth curve analysis revealed the inability of Stenotrophomonas sp. NISOC-04 to utilize dibenzothiophene (DBT) as the exclusive carbon or carbon/sulfur source. Gibbs' assay showed no 2-hydroxy biphenyl accumulation, but HPLC confirmed the presence of 2-hydroxy biphenyl as the final product of DBT desulfurization. Under sulfur starvation, Stenotrophomonas sp. NISOC-04 produced a huge biomass with untraceable sulfur and utilized atmospheric insignificant sulfur levels.
Collapse
|
16
|
Caro A, Boltes K, Leton P, Garcia-Calvo E. Biodesulfurization of dibenzothiophene by growing cells of Pseudomonas putida CECT 5279 in biphasic media. CHEMOSPHERE 2008; 73:663-669. [PMID: 18760442 DOI: 10.1016/j.chemosphere.2008.07.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 07/10/2008] [Accepted: 07/10/2008] [Indexed: 05/26/2023]
Abstract
Several studies have proven that natural or genetically modified bacteria, such as Pseudomonas putida strain, degrade recalcitrant organic sulfur compounds. However, from a practical point of view, the biodesulfurization (BDS) process has to be performed with really high proportions of organic solvents. In this work, the dibenzothiophene (DBT) was selected as recalcitrant model compound, and hexadecane as model organic solvent. It has been observed that P. putida CECT 5279 was able to desulfurize DBT even in the presence of 50% (v/v) of hexadecane. A concentration of 400 ppm of DBT was converted at a specific rate of generation of desulfurized final product, 2-hydroxybiphenyl (HBP), of 2.3 and 1.5 mg HBP L-1 (g DC L-1 h)-1 for 27% and 50% (v/v) of hexadecane, respectively. Finally, the Haldane kinetic model was used to describe the process evolution. The study is relevant as it has been proven that the strain CECT 5279 is a potential biocatalyst for developing an efficient BDS process.
Collapse
Affiliation(s)
- Ainhoa Caro
- Dpto. Quimica Analitica e Ingenieria Quimica, Facultad de Ciencias, Universidad de Alcala, Madrid, Spain
| | | | | | | |
Collapse
|