1
|
Possible Processes and Mechanisms of Hexachlorobenzene Decomposition by the Selected Comamonas testosteroni Bacterial Strains. Processes (Basel) 2022. [DOI: 10.3390/pr10112170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: The bacterial destructing activity toward pesticides has been the focus of research in the last few decades. Hexachlorobenzene is included in the organochlorine pesticides group that are prohibited for use. However, large hexachlorobenzene amounts are still concentrated in the soil, stressing the relevance of research on hexachlorobenzene-destroying bacteria. Methods: The ability to destroy hexachlorobenzene by Comamonas testosteroni UCM B-400, B-401, B-213 strains was investigated and established. Bacteria were cultivated (7 days at 28 °C) in mineral Luria-Bertrani (LB) medium with three hexachlorobenzene doses: 10, 20, 50 mg/L. The hexachlorobenzene concentrations were recorded by a gas chromatography method. Results: The results showed that C. testosteroni UCM B-400, B-401 have high destructive activity toward hexachlorobenzene. The highest (50 mg/L) initial concentration decreased to 41.5 and 43.8%, respectively, for C. testosteroni UCM B-400, B-401. The unadapted C. testosteroni UCM B-213 was tolerant to hexachlorobenzene (cell titers after cultivating with 10.0, 20.0, 50.0 mg/mL were higher compared to initial titer), but had a low-destructing activity level (two times less than B-400 and B-401). Conclusions: Bacterial strains C. testosteroni UCM B-400, B-401 can be seen as a potential soil bioremediation from hexachlorobenzene pollution.
Collapse
|
2
|
Tang Q, Lu T, Liu SJ. Developing a Synthetic Biology Toolkit for Comamonas testosteroni, an Emerging Cellular Chassis for Bioremediation. ACS Synth Biol 2018; 7:1753-1762. [PMID: 29860823 DOI: 10.1021/acssynbio.7b00430] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthetic biology is rapidly evolving into a new phase that emphasizes real-world applications such as environmental remediation. Recently, Comamonas testosteroni has become a promising chassis for bioremediation due to its natural pollutant-degrading capacity; however, its application is hindered by the lack of fundamental gene expression tools. Here, we present a synthetic biology toolkit that enables rapid creation of functional gene circuits in C. testosteroni. We first built a shuttle system that allows efficient circuit construction in E. coli and necessary phenotypic testing in C. testosteroni. Then, we tested a set of wildtype inducible promoters, and further used a hybrid strategy to create engineered promoters to expand expression strength and dynamics. Additionally, we tested the T7 RNA Polymerase-PT7 promoter system and reduced its leaky expression through promoter mutation for gene expression. By coupling random library construction with FACS screening, we further developed a synthetic T7 promoter library to confer a wider range of expression strength and dynamic characteristics. This study provides a set of valuable tools to engineer gene circuits in C. testosteroni, facilitating the establishment of the organism as a useful microbial chassis for bioremediation purposes.
Collapse
Affiliation(s)
- Qiang Tang
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | | | - Shuang-Jiang Liu
- State Key Laboratory of Microbial Resources, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Environmental Microbiology Research Center, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
3
|
Tang Q, Lu T, Liu SJ. Engineering the bacterium Comamonas testosteroni CNB-1: Plasmid curing and genetic manipulation. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Stack TMM, Li W, Johnson WH, Zhang YJ, Whitman CP. Inactivation of 4-Oxalocrotonate Tautomerase by 5-Halo-2-hydroxy-2,4-pentadienoates. Biochemistry 2018; 57:1012-1021. [PMID: 29303557 DOI: 10.1021/acs.biochem.7b00899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
5-Halo-2-hydroxy-2,4-pentadienoates (5-halo-HPDs) are reportedly generated in the bacterial catabolism of halogenated aromatic hydrocarbons by the meta-fission pathway. The 5-halo-HPDs, where the halogen can be bromide, chloride, or fluoride, result in the irreversible inactivation of 4-oxalocrotonate tautomerase (4-OT), which precedes the enzyme that generates them. The loss of activity is due to the covalent modification of the nucleophilic amino-terminal proline. Mass spectral and crystallographic analysis of the modified enzymes indicates that inactivation of 4-OT by 5-chloro- and 5-bromo-2-hydroxy-2,4-pentadienoate follows a mechanism different from that for the inactivation of 4-OT by 5-fluoro-2-hydroxy-2,4-pentadienoate. The 5-chloro and 5-bromo derivatives undergo 4-OT-catalyzed tautomerization to their respective α,β-unsaturated ketones followed by attack at C5 (by the prolyl nitrogen) with concomitant loss of the halide. For the 5-fluoro species, the presence of a small amount of the α,β-unsaturated ketone could result in a Michael addition of the prolyl nitrogen to C4 followed by protonation at C3. The fluoride is not eliminated. These observations suggest that the inactivation of 4-OT by a downstream metabolite could hamper the efficacy of the pathway, which is the first time that such a bottleneck has been reported for the meta-fission pathway.
Collapse
Affiliation(s)
- Tyler M M Stack
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Wenzong Li
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Yan Jessie Zhang
- Department of Molecular Biosciences, The University of Texas at Austin , Austin, Texas 78712, United States.,Institute for Cellular and Molecular Biology, The University of Texas at Austin , Austin, Texas 78712, United States
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
5
|
Stack TMM, Johnson WH, Whitman CP. Synthesis and enzymatic ketonization of the 5-(halo)-2-hydroxymuconates and 5-(halo)-2-hydroxy-2,4-pentadienoates. Beilstein J Org Chem 2017; 13:1022-1031. [PMID: 28684981 PMCID: PMC5480330 DOI: 10.3762/bjoc.13.101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/11/2017] [Indexed: 02/03/2023] Open
Abstract
5-Halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates are stable dienols that are proposed intermediates in bacterial meta-fission pathways for the degradation of halogenated aromatic compounds. The presence of the halogen raises questions about how the bulk and/or electronegativity of these substrates would affect enzyme catalysis or whether some pathway enzymes have evolved to accommodate it. To address these questions, 5-halo-2-hydroxymuconates and 5-halo-2-hydroxy-2,4-pentadienoates (5-halo = Cl, Br, F) were synthesized and a preliminary analysis of their enzymatic properties carried out. In aqueous buffer, 5-halo-2-hydroxy-2,4-pentadienoates rapidly equilibrate with the β,γ-unsaturated ketones. For the 5-chloro and 5-bromo derivatives, a slower conversion to the α,β-isomers follows. There is no detectable formation of the α,β-isomer for the 5-fluoro derivative. Kinetic parameters were also obtained for both sets of compounds in the presence of 4-oxalocrotonate tautomerase (4-OT) from Pseudomonas putida mt-2 and Leptothrix cholodnii SP-6. For 5-halo-2-hydroxymuconates, there are no major differences in the kinetic parameters for the two enzymes (following the formation of the β,γ-unsaturated ketones). In contrast, the L. cholodnii SP-6 4-OT is ≈10-fold less efficient than the P. putida mt-2 4-OT in the formation of the β,γ-unsaturated ketones and the α,β-isomers from the 5-halo-2-hydroxy-2,4-pentadienoates. The implications of these findings are discussed. The availability of these compounds will facilitate future studies of the haloaromatic catabolic pathways.
Collapse
Affiliation(s)
- Tyler M M Stack
- Department of Molecular Biosciences, College of Natural Sciences, 1 University Station, University of Texas, Austin, TX 78712, USA
| | - William H Johnson
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, 1 University Station, University of Texas, Austin, TX 78712, USA
| | - Christian P Whitman
- Division of Chemical Biology and Medicinal Chemistry, College of Pharmacy, 1 University Station, University of Texas, Austin, TX 78712, USA
| |
Collapse
|
6
|
Influence of 3-Chloroaniline on the Biofilm Lifestyle of Comamonas testosteroni and Its Implications on Bioaugmentation. Appl Environ Microbiol 2016; 82:4401-4409. [PMID: 27208104 DOI: 10.1128/aem.00874-16] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/09/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Bioaugmentation has been frequently proposed in wastewater and soil treatment to remove toxic aromatic compounds. The performance of bioaugmentation is affected by a number of biological and environmental factors, including the interaction between the target pollutant and the augmented bacterial cells. In this study, using Comamonas testosteroni and 3-chloroaniline (3-CA) as the model organism and target pollutant, we explored the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our results showed that the exposure to 3-CA greatly reduced the retention of C. testosteroni cells in packed-bed bioreactors (from 22% to 15% after three pore volumes), which could be attributed to the altered bacterial motility and cell surface hydrophobicity. To further understand the molecular mechanisms, we employed an integrated genomic and transcriptomic analysis to examine the influence of 3-CA on the expression of genes important to the biofilm lifestyle of C. testosteroni We found that exposure to 3-CA reduced the intracellular c-di-GMP level by downregulating the expression of genes encoding c-di-GMP synthases and induced massive cell dispersal from the biofilms. Our findings provide novel environmental implications on bioaugmentation, particularly in biofilm reactors, for the treatment of wastewater containing recalcitrant industrial pollutants. IMPORTANCE Bioaugmentation is a bioremediation approach that often has been described in the literature but has almost never been successfully applied in practice. Many biological and environmental factors influence the overall performance of bioaugmentation. Among these, the interaction between the target pollutant and the augmented bacterial cells is one of the most important factors. In this study, we revealed the influence of toxic aromatic pollutants on the biofilm lifestyle of bacteria capable of degrading aromatic compounds toward a better understanding of cell-pollutant interaction in bioaugmentation. Our findings provide novel environmental implications on bioaugmentation for the treatment of wastewater containing recalcitrant industrial pollutants; in particular, the exposure to toxic pollutants may reduce the retention of augmented organisms in biofilm reactors by reducing the c-di-GMP level, and approaches to elevating or maintaining a high c-di-GMP level may be promising to establish and maintain sustainable bioaugmentation activity.
Collapse
|
7
|
Zhang H, Jiang X, Xiao W, Lu L. Proteomic strategy for the analysis of the polychlorobiphenyl-degrading cyanobacterium Anabaena PD-1 exposed to Aroclor 1254. PLoS One 2014; 9:e91162. [PMID: 24618583 PMCID: PMC3949748 DOI: 10.1371/journal.pone.0091162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 02/07/2014] [Indexed: 12/21/2022] Open
Abstract
The cyanobacterium Anabaena PD-1, which was originally isolated from polychlorobiphenyl (PCB)-contaminated paddy soils, has capabilities for dechlorinatin and for degrading the commercial PCB mixture Aroclor 1254. In this study, 25 upregulated proteins were identified using 2D electrophoresis (2-DE) coupled with matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS). These proteins were involved in (i) PCB degradation (i.e., 3-chlorobenzoate-3,4-dioxygenase); (ii) transport processes [e.g., ATP-binding cassette (ABC) transporter substrate-binding protein, amino acid ABC transporter substrate-binding protein, peptide ABC transporter substrate-binding protein, putrescine-binding protein, periplasmic solute-binding protein, branched-chain amino acid uptake periplasmic solute-binding protein, periplasmic phosphate-binding protein, phosphonate ABC transporter substrate-binding protein, and xylose ABC transporter substrate-binding protein]; (iii) energetic metabolism (e.g., methanol/ethanol family pyrroloquinoline quinone (PQQ)-dependent dehydrogenase, malate-CoA ligase subunit beta, enolase, ATP synthase β subunit, FOF1 ATP synthase subunit beta, ATP synthase α subunit, and IMP cyclohydrolase); (iv) electron transport (cytochrome b6f complex Fe-S protein); (v) general stress response (e.g., molecular chaperone DnaK, elongation factor G, and translation elongation factor thermostable); (vi) carbon metabolism (methanol dehydrogenase and malate-CoA ligase subunit beta); and (vii) nitrogen reductase (nitrous oxide reductase). The results of real-time polymerase chain reaction showed that the genes encoding for dioxygenase, ABC transporters, transmembrane proteins, electron transporter, and energetic metabolism proteins were significantly upregulated during PCB degradation. These genes upregulated by 1.26- to 8.98-fold. These findings reveal the resistance and adaptation of cyanobacterium to the presence of PCBs, shedding light on the complexity of PCB catabolism by Anabaena PD-1.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang, China
| |
Collapse
|
8
|
Toxicity and Microbial Degradation of Nitrobenzene, Monochloronitrobenzenes, Polynitrobenzenes, and Pentachloronitrobenzene. J CHEM-NY 2014. [DOI: 10.1155/2014/265140] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Nitrobenzene and its derivatives (NBDs) are highly toxic compounds that have been released into the environment by anthropogenic activities. Many bacteria and fungi have been well-characterized for their ability to degrade NBDs. The biochemical and molecular characterization of the microbial degradation of NBDs has also been studied. In this review, we have summarized the toxicity and degradation profiles of nitrobenzene, monochloronitrobenzenes, polynitrobenzenes, and pentachloronitrobenzene. This review will increase our current understanding of toxicity and microbial degradation of NBDs.
Collapse
|
9
|
Terrell CR, Burks EA, Whitman CP, Hoffman DW. Structural and kinetic characterization of two 4-oxalocrotonate tautomerases in Methylibium petroleiphilum strain PM1. Arch Biochem Biophys 2013; 537:113-24. [PMID: 23831510 DOI: 10.1016/j.abb.2013.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022]
Abstract
Methylibium petroleiphilum strain PM1 uses various petroleum products including the fuel additive methyl tert-butyl ether and straight chain and aromatic hydrocarbons as sole carbon and energy sources. It has two operons, dmpI and dmpII, that code for the enzymes in a pair of parallel meta-fission pathways. In order to understand the roles of the pathways, the 4-oxalocrotonate tautomerase (4-OT) isozyme from each pathway was characterized. Tautomerase I and tautomerase II have the lowest pairwise sequence identity (35%) among the isozyme pairs in the parallel pathways, and could offer insight into substrate preferences and pathway functions. The kinetic parameters of tautomerase I and tautomerase II were determined using 2-hydroxymuconate and 5-(methyl)-2-hydroxymuconate. Both tautomerase I and tautomerase II process the substrates, but with different efficiencies. Crystal structures were determined for both tautomerase I and tautomerase II, at 1.57 and 1.64Å resolution, respectively. The backbones of tautomerase I and tautomerase II are highly similar, but have distinct active site environments. The results, in combination with those for other structurally and kinetically characterized 4-OT isozymes, suggest that tautomerase I catalyzes the tautomerization of both 2-hydroxymuconate and alkyl derivatives, whereas tautomerase II might specialize in other aromatic hydrocarbon metabolites.
Collapse
Affiliation(s)
- Cassidy R Terrell
- Department of Chemistry and Biochemistry, University of Texas, Austin, 78712, USA
| | | | | | | |
Collapse
|
10
|
Ni B, Zhang Y, Chen DW, Wang BJ, Liu SJ. Assimilation of aromatic compounds by Comamonas testosteroni: characterization and spreadability of protocatechuate 4,5-cleavage pathway in bacteria. Appl Microbiol Biotechnol 2012; 97:6031-41. [DOI: 10.1007/s00253-012-4402-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/25/2012] [Accepted: 08/29/2012] [Indexed: 10/27/2022]
|
11
|
Yong YC, Zhong JJ. Recent advances in biodegradation in China: New microorganisms and pathways, biodegradation engineering, and bioenergy from pollutant biodegradation. Process Biochem 2010. [DOI: 10.1016/j.procbio.2010.04.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Kim SJ, Kweon O, Cerniglia CE. Proteomic applications to elucidate bacterial aromatic hydrocarbon metabolic pathways. Curr Opin Microbiol 2009; 12:301-9. [DOI: 10.1016/j.mib.2009.03.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2009] [Revised: 03/26/2009] [Accepted: 03/31/2009] [Indexed: 11/26/2022]
|