1
|
Zhang J, Feng W, Ren L. Fungal Extracellular Enzymes from Aspergillus spp. as Promising Candidates for Extra-Heavy Oil Degradation and Enhanced Oil Recovery. Microorganisms 2024; 12:2248. [PMID: 39597637 PMCID: PMC11596075 DOI: 10.3390/microorganisms12112248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024] Open
Abstract
Heavy crude oil (HCO) and extra-heavy crude oil (EHCO) with high viscosity and density pose enormous challenges to the exploitation of oil reserves. While bacteria are increasingly used in biocatalytic upgrading of HCO and EHCO, less attention has been paid to the potential of fungi. The aim of this study was to ascertain the role of fungal extracellular enzymes from Aspergillus spp. In the biodegradation of EHCO and their application potential for enhanced oil recovery. A. terreus HJ2 and A. nidulans HJ4 with the ability to biodegrade HCO were previously isolated from bitumen enrichment cultures. Both strains grew well on EHCO agar plates supplemented with a small amount of soluble starch (0.2%) and yeast extract (0.3%). Extracellular enzymes from each strain separately, as well as mixtures of the enzymes, exhibited EHCO degradation activity, leading to redistribution of hydrocarbons with substantial formation of biogases and organic acids in a 7-day period. Enzymatic degradation resulted in decreased contents of resins and asphaltenes, accompanied by increased contents of saturates and aromatics. Gas chromatography-mass spectrometry revealed distinct redistribution patterns of n-alkane in the biotreated oil. Enzymatic degradation additionally caused considerable reduction in oil viscosity (by 12.7%) and heavy metal concentrations (Ni, by 44.1%; Fe, by 54.0%; V, by 31.6%). The results provide empirical evidence for the application potential of fungal extracellular enzymes from Aspergillus spp. in EHCO recovery and biocatalytic upgrading of EHCO.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Ecology and Environment, Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830046, China;
| | - Wendi Feng
- College of Ecology and Environment, Key Laboratory of Oasis Ecology of the Ministry of Education, Xinjiang University, Urumqi 830046, China;
| | - Lu Ren
- Xinjiang Oilfield Company, PetroChina, Karamay 834000, China;
| |
Collapse
|
2
|
Navas-Cáceres OD, Parada M, Zafra G. Development of a highly tolerant bacterial consortium for asphaltene biodegradation in soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:123439-123451. [PMID: 37982951 PMCID: PMC10746765 DOI: 10.1007/s11356-023-30682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/21/2023] [Indexed: 11/21/2023]
Abstract
Asphaltenes are the most polar and heavy fraction of petroleum, and their complex structure and toxicity make them resistant to biodegradation. The ability to tolerate high asphaltene concentrations is crucial to reducing the toxicity-related inhibition of microbial growth and improving their capacity for adaptation, survival, and biodegradation in soils highly contaminated with asphaltenes. This study developed a highly tolerant consortium for efficient asphaltene biodegradation in soils from 22 bacterial isolates obtained from heavy-crude oil-contaminated soils. Isolates corresponded to the Rhodococcus, Bacillus, Stutzerimonas, Cellulosimicrobium, Pseudomonas, and Paenibacillus genera, among others, and used pure asphaltenes and heavy crude oil as the only carbon sources. Surface plate assays were used to evaluate the tolerance of individual isolates to asphaltenes, and the results showed variations in the extension and inhibition rates with maximum tolerance levels at 60,000 mg asphaltenes l-1. Inhibition assays were used to select non-antagonistic bacterial isolates among those showing the highest tolerance levels to asphaltenes. A consortium made up of the five most tolerant and non-antagonistic bacterial isolates was able to degrade up to 83 wt.% out of 10,000 mg asphaltenes kg-1 in the soil after 52 days. Due to its biological compatibility, high asphaltene tolerance, and ability to utilise it as a source of energy, the degrading consortium developed in this work has shown a high potential for soil bioremediation and is a promising candidate for the treatment of aged soil areas contaminated with heavy and extra-heavy crude oil. This would be the first research to assess and consider extreme bacterial tolerance and microbial antagonism between individual degrading microbes, leading to the development of an improved consortium capable of efficiently degrading high amounts of asphaltenes in soil.
Collapse
Affiliation(s)
- Oscar Daniel Navas-Cáceres
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - Mayra Parada
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia
| | - German Zafra
- Grupo de Investigación en Bioquímica y Microbiología (GIBIM), Escuela de Microbiología, Universidad Industrial de Santander, 680002, Bucaramanga, Colombia.
| |
Collapse
|
3
|
Chafale A, Kapley A. Biosurfactants as microbial bioactive compounds in microbial enhanced oil recovery. J Biotechnol 2022; 352:1-15. [DOI: 10.1016/j.jbiotec.2022.05.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 04/30/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022]
|
4
|
Cao Y, Zhang B, Zhu Z, Rostami M, Dong G, Ling J, Lee K, Greer CW, Chen B. Access-dispersion-recovery strategy for enhanced mitigation of heavy crude oil pollution using magnetic nanoparticles decorated bacteria. BIORESOURCE TECHNOLOGY 2021; 337:125404. [PMID: 34139564 DOI: 10.1016/j.biortech.2021.125404] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/04/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Heavy crude oil (HCO) pollution has gained global attention, but traditional bioremediating practices demonstrate limited effectiveness. This study developed magnetic nanoparticles decorated bacteria (MNPB) using an oil-degrading and biosurfactant-producing Rhodococcus erythropolis species and identified a novel access-dispersion-recovery strategy for enhanced HCO pollution mitigation. The strategy entails (1) magnetic navigation of the MNPB towards HCO layer, (2) enhanced oil dispersion and formation of suspended oil-bacteria aggregates, and (3) magnetic recovery of these aggregates. The UV-spectrophotometer analysis showed that this strategy can enable up to 62% removal of HCO. The GC-MS analysis demonstrated that the MNPB enhanced the degradation of low-molecular-weight aromatics comparing with the pure bacteria, and the recovery process further removed oil-bacteria aggregates and entrained high-molecular-weight aromatics. The feasibility of using MNPB to mitigate HCO pollution could shed light on the emerging bioremediation applications.
Collapse
Affiliation(s)
- Yiqi Cao
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Baiyu Zhang
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada.
| | - Zhiwen Zhu
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Masoumeh Rostami
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Guihua Dong
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Jingjing Ling
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| | - Kenneth Lee
- Fisheries and Oceans Canada, Ecosystem Science, Ottawa, ON K1A 0E6, Canada
| | - Charles W Greer
- National Research Council Canada, Energy, Mining and Environment Research Centre, Montreal, QC H4P 2R2, Canada
| | - Bing Chen
- The Northern Region Persistent Organic Pollution (NRPOP) Control Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's, NL A1B 3X5, Canada
| |
Collapse
|
5
|
Zargar AN, Kumar A, Sinha A, Kumar M, Skiadas I, Mishra S, Srivastava P. Asphaltene biotransformation for heavy oil upgradation. AMB Express 2021; 11:127. [PMID: 34491455 PMCID: PMC8423941 DOI: 10.1186/s13568-021-01285-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 11/24/2022] Open
Abstract
Globally, the reserves of heavy crude oil are seven times more abundant than that of light crude, and yet, they are underutilized because of their high viscosity and density, which is largely due to the presence of large amounts of asphaltenes. Biotransformation of heavy oil asphaltenes into smaller metabolites can be used for reducing their viscosity. Several microorganisms capable of asphaltene biodegradation have been reported but only few have been characterized for its biotransformation. In the present study, a 9-membered microbial consortium was isolated from an oil contaminated soil. About 72% and 75% asphaltene biotransformation was achieved by growing cells at shake flask level and in a 1.5 l bioreactor, respectively. A representative structure of asphaltene was constructed based on LC–MS, 1H-NMR, 13C-NMR, FT-IR, ICPMS and elemental analysis (CHNS) of n-heptane purified asphaltene from Maya crude oil. Biotransformation of asphaltene, as analyzed by performing 1H-NMR, FT-IR and elemental analysis, resulted in 80% decrease in S and N when compared to the control along with incorporation of oxygen in the structure of asphaltene. About 91% decrease in the viscosity of the Maya crude oil was observed after two weeks when oil: aqueous phase ratio was 1:9. The results suggest that the isolated microbial consortium can be used for biological upgradation of heavy crude oil. To our knowledge, this is the first report where a microbial consortium resulted in such high asphaltene biotransformation.
Collapse
|
6
|
Zhang J, Gao H, Xue Q. Potential applications of microbial enhanced oil recovery to heavy oil. Crit Rev Biotechnol 2020; 40:459-474. [PMID: 32166983 DOI: 10.1080/07388551.2020.1739618] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Heavy oil accounts for around one-third of total global oil and gas resources. The progressive depletion of conventional energy reserves has led to an increased emphasis on the efficient exploitation of heavy oil and bitumen reserves in order to meet energy demand. Therefore, it is imperative to develop new technologies for heavy oil upgrading and recovery. Biologically-based technology that involves using microorganisms or their metabolites to mobilize heavy oil trapped in reservoir rocks can make a significant contribution to the recovery of heavy oils. Here, the results of laboratory experiments and field trials applying microbial enhanced oil recovery (MEOR) technologies are summarized. This review provides an overview of the basic concepts, mechanisms, advantages, problems, and trends in MEOR, and demonstrates the credibility of MEOR methods for applications in enhanced heavy oil recovery and the petroleum refining processes. This technology is cost-effective and environmentally-friendly. The feasibility of MEOR technologies for heavier oil has not yet been fully realized due to the perceived process complexity and a lack of sufficient laboratory research and field test data. However, novel developments such as enzyme-enhanced oil recovery continues to improve MEOR methods.HighlightsHeavy oil represents the largest known potentially-recoverable petroleum energy resource.Novel biotechnological processes are needed to recover or upgrade heavy oil.Microbial technologies have great potential for heavy oil recovery.Microorganisms can produce metabolic byproducts to mobilize oil trapped in reservoirs.More technological research is needed to develop microbial enhanced oil recovery.
Collapse
Affiliation(s)
- Junhui Zhang
- College of Resource and Environment Sciences, Xinjiang University, Urumqi, China.,Key Laboratory of Oasis Ecology of Education Ministry, Xinjiang University, Urumqi, China
| | - Hui Gao
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| | - Quanhong Xue
- College of Natural Resources and Environment, Northwest A & F University, Yangling, China
| |
Collapse
|
7
|
Rathi R, Lavania M, Kukreti V, Lal B. Evaluating the potential of indigenous methanogenic consortium for enhanced oil and gas recovery from high temperature depleted oil reservoir. J Biotechnol 2018; 283:43-50. [DOI: 10.1016/j.jbiotec.2018.06.347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 06/01/2018] [Accepted: 06/27/2018] [Indexed: 10/28/2022]
|
8
|
Pourfakhraei E, Badraghi J, Mamashli F, Nazari M, Saboury AA. Biodegradation of asphaltene and petroleum compounds by a highly potent Daedaleopsis sp. J Basic Microbiol 2018; 58:609-622. [PMID: 29775208 DOI: 10.1002/jobm.201800080] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/15/2018] [Accepted: 04/22/2018] [Indexed: 11/11/2022]
Abstract
Petroleum, as the major energy source, is indispensable from our lives. Presence of compounds resistant to degradation can pose risks for human health and environment. Basidiomycetes have been considered as powerful candidates in biodegradation of petroleum compounds via secreting ligninolytic enzymes. In this study a wood-decaying fungus was isolated by significant degradation ability that was identified as Daedaleopsis sp. by morphological and molecular identification methods. According to GC/MS studies, incubation of heavy crude oil with Daedaleopsis sp. resulted in increased amounts of <C24 hydrocarbons and decreased amounts of >C24 compounds. Degradation of asphaltene, anthracene, and dibenzofuran by the identified fungal strain was determined to evaluate its potential in biodegradation. After 14 days of incubation, Daedaleopsis sp. could degrade 93.7% and 91.2% of anthracene and dibenzofuran, respectively, in pH 5 and 40 °C in optimized medium, as revealed by GC/FID. Notably, analysis of saturates, aromatics, resins, and asphaltenes showed a reduction of 88.7% and 38% in asphaletene and aromatic fractions. Laccase, lignin peroxidase, and manganese peroxidase activities were enhanced from 51.3, 145.2, 214.5 U ml-1 in the absence to 121.5, 231.4, and 352.5 U ml-1 in the presence of heavy crude oil, respectively. This is the first report that Daedaleopsis sp. can degrade asphaltene and dibenzofuran. Moreover, compared to the reported results of asphaltene biodegradation, this strain was the most successful. Thus, Daedaleopsis sp. could be a promising candidate for biotransformation of heavy crude oil and biodegradation of recalcitrant toxic compounds.
Collapse
Affiliation(s)
- Elaheh Pourfakhraei
- Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Jalil Badraghi
- Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Fatemeh Mamashli
- Research Institute of Applied Sciences, Academic Center of Education, Culture and Research (ACECR), Shahid Beheshti University, Tehran, Iran
| | - Mahboobeh Nazari
- Monoclonal Antibody Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ali Akbar Saboury
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| |
Collapse
|
9
|
Oyehan TA, Al-Thukair AA. Isolation and characterization of PAH-degrading bacteria from the Eastern Province, Saudi Arabia. MARINE POLLUTION BULLETIN 2017; 115:39-46. [PMID: 27912917 DOI: 10.1016/j.marpolbul.2016.11.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 10/25/2016] [Accepted: 11/06/2016] [Indexed: 06/06/2023]
Abstract
Contaminated sediment samples were collected from the Eastern Province, Saudi Arabia for isolation of pyrene- and phenanthrene-degrading bacteria by enrichment method. Four isolates were morphologically characterized as Gram-negative rod strains and 16S rRNA sequence analysis revealed the isolates as closely related to Pseudomonas aeruginosa, P. citronellolis, Ochrobactrum intermedium and Cupriavidus taiwanensis. Degradation of the polycyclic aromatic hydrocarbons (PAHs) by the latter three strains was investigated in liquid cultures. Results of concentration reduction analyzed with gas chromatography show that P. citronellolis_LB was efficient in removing phenanthrene, degrading 94% of 100ppm in 15days while O. intermedium_BC1 was more efficient in pyrene-removal, degrading 62% in 2weeks. Furthermore, bacterial growth assessment using optical density and population counts revealed the latter as more suitable for microbial growth analysis in PAH-containing cultures. In conclusion, the isolated bacterial strains could be further developed for efficient use in biodegradation of PAH.
Collapse
Affiliation(s)
- Tajudeen A Oyehan
- Environmental Sciences Program of Earth Sciences Dept., King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia
| | - Assad A Al-Thukair
- Life Sciences Dept., King Fahd University of Petroleum & Minerals, Dhahran 31261, Saudi Arabia.
| |
Collapse
|
10
|
Al-Sayegh A, Al-Wahaibi Y, Joshi S, Al-Bahry S, Elshafie A, Al-Bemani A. Bioremediation of Heavy Crude Oil Contamination. ACTA ACUST UNITED AC 2016. [DOI: 10.2174/1874070701610010301] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Crude oil contamination is one of the major environmental concerns and it has drawn interest from researchers and industries. Heavy oils contain 24-64% saturates and aromatics, 14-39% resins and 11-45% asphaltene. Resins and asphaltenes mainly consist of naphthenic aromatic hydrocarbons with alicyclic chains which are the hardest to degrade. Crude oil biodegradation process, with its minimal energy need and environmentally friendly approach, presents an opportunity for bioremediation and as well for enhanced oil recovery to utilize heavy oil resources in an efficient manner. Biodegradation entails crude oil utilization as a carbon source for microorganisms that in turn change the physical properties of heavy crude oil by oxidizing aromatic rings, chelating metals and severing internal bonds/chains between molecules. Biodegradation does not necessarily lower quality of crude oil as there are cases where quality was improved. This paper provides information on heavy crude oil chemistry, bioremediation concept, biodegradation enzymes, cases of Microbial Enhanced heavy crude Oil Recovery (MEOR) and screening criteria towards a better understanding of the biodegradation application. Through the utilization of single microorganisms and consortia, researchers were able to biodegrade single pure hydrocarbon components, transform heavy crude oil fractions to lighter fractions, remove heavy metals and reduce viscosity of crude oil.
Collapse
|
11
|
Abstract
Crude oil has been part of the marine environment for millions of years, and microbes that use its rich source of energy and carbon are found in seawater, sediments, and shorelines from the tropics to the polar regions. Catastrophic oil spills stimulate these organisms to "bloom" in a reproducible fashion, and although oil does not provide bioavailable nitrogen, phosphorus or iron, there are enough of these nutrients in the sea that when dispersed oil droplets dilute to low concentrations these low levels are adequate for microbial growth. Most of the hydrocarbons in dispersed oil are degraded in aerobic marine waters with a half-life of days to months. In contrast, oil that reaches shorelines is likely to be too concentrated, have lower levels of nutrients, and have a far longer residence time in the environment. Oil that becomes entrained in anaerobic sediments is also likely to have a long residence time, although it too will eventually be biodegraded. Thus, data that encompass everything from the ecosystem to the molecular level are needed for understanding the complicated process of petroleum biodegradation in marine environments.
Collapse
Affiliation(s)
- Terry C Hazen
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Roger C Prince
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Nagissa Mahmoudi
- Departments of Civil & Environmental Engineering, Microbiology, Earth & Planetary Sciences, Center for Environmental Biotechnology, Bredesen Center, Genome Science & Technology, Institute for Secure and Sustainable Environment, University of Tennessee , Knoxville, Tennessee 37996, United States and
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
- ExxonMobil Biomed Sci Inc., Annandale, New Jersey 08801, United States
- Department of Civil and Environmental Engineering, University of Tennessee , Knoxville, Tennessee 37996, United States
| |
Collapse
|
12
|
Thorn KA, Cox LG. Probing the Carbonyl Functionality of a Petroleum Resin and Asphaltene through Oximation and Schiff Base Formation in Conjunction with N-15 NMR. PLoS One 2015; 10:e0142452. [PMID: 26556054 PMCID: PMC4640887 DOI: 10.1371/journal.pone.0142452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/21/2015] [Indexed: 11/18/2022] Open
Abstract
Despite recent advances in spectroscopic techniques, there is uncertainty regarding the nature of the carbonyl groups in the asphaltene and resin fractions of crude oil, information necessary for an understanding of the physical properties and environmental fate of these materials. Carbonyl and hydroxyl group functionalities are not observed in natural abundance 13C nuclear magnetic resonance (NMR) spectra of asphaltenes and resins and therefore require spin labeling techniques for detection. In this study, the carbonyl functionalities of the resin and asphaltene fractions from a light aliphatic crude oil that is the source of groundwater contamination at the long term USGS study site near Bemidji, Minnesota, have been examined through reaction with 15N-labeled hydroxylamine and aniline in conjunction with analysis by solid and liquid state 15N NMR. Ketone groups were revealed through 15N NMR detection of their oxime and Schiff base derivatives, and esters through their hydroxamic acid derivatives. Anilinohydroquinone adducts provided evidence for quinones. Some possible configurations of the ketone groups in the resin and asphaltene fractions can be inferred from a consideration of the likely reactions that lead to heterocyclic condensation products with aniline and to the Beckmann reaction products from the initially formed oximes. These include aromatic ketones and ketones adjacent to quaternary carbon centers, β-hydroxyketones, β-diketones, and β-ketoesters. In a solid state cross polarization/magic angle spinning (CP/MAS) 15N NMR spectrum recorded on the underivatized asphaltene as a control, carbazole and pyrrole-like nitrogens were the major naturally abundant nitrogens detected.
Collapse
Affiliation(s)
- Kevin A. Thorn
- U.S. Geological Survey, Denver Federal Center, MS 408, Denver, Colorado, 80225–0046, United States of America
- * E-mail:
| | - Larry G. Cox
- U.S. Geological Survey, Denver Federal Center, MS 408, Denver, Colorado, 80225–0046, United States of America
| |
Collapse
|
13
|
Al-Sayegh A, Al-Wahaibi Y, Al-Bahry S, Elshafie A, Al-Bemani A, Joshi S. Microbial enhanced heavy crude oil recovery through biodegradation using bacterial isolates from an Omani oil field. Microb Cell Fact 2015; 14:141. [PMID: 26377922 PMCID: PMC4573931 DOI: 10.1186/s12934-015-0330-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 11/10/2022] Open
Abstract
Background Biodegradation is a cheap and environmentally friendly process that could breakdown and utilizes heavy crude oil (HCO) resources. Numerous bacteria are able to grow using hydrocarbons as a carbon source; however, bacteria that are able to grow using HCO hydrocarbons are limited. In this study, HCO degrading bacteria were isolated from an Omani heavy crude oil field. They were then identified and assessed for their biodegradation and biotransformation abilities under aerobic and anaerobic conditions. Results Bacteria were grown in five different minimum salts media. The isolates were identified by MALDI biotyper and 16S rRNA sequencing. The nucleotide sequences were submitted to GenBank (NCBI) database. The bacteria were identified as Bacillus subtilis and B. licheniformis. To assess microbial growth and biodegradation of HCO by well-assay on agar plates, samples were collected at different intervals. The HCO biodegradation and biotransformation were determined using GC-FID, which showed direct correlation of microbial growth with an increased biotransformation of light hydrocarbons (C12 and C14). Among the isolates, B. licheniformis AS5 was the most efficient isolate in biodegradation and biotransformation of the HCO. Therefore, isolate AS5 was used for heavy crude oil recovery experiments, in core flooding experiments using Berea core plugs, where an additional 16 % of oil initially in place was recovered. Conclusions This is the first report from Oman for bacteria isolated from an oil field that were able to degrade and transform HCO to lighter components, illustrating the potential use in HCO recovery. The data suggested that biodegradation and biotransformation processes may lead to additional oil recovery from heavy oil fields, if bacteria are grown in suitable medium under optimum growth conditions.
Collapse
Affiliation(s)
- Abdullah Al-Sayegh
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Yahya Al-Wahaibi
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Saif Al-Bahry
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Abdulkadir Elshafie
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman.
| | - Ali Al-Bemani
- Department of Petroleum and Chemical Engineering, College of Engineering, Sultan Qaboos University, Muscat, Oman.
| | - Sanket Joshi
- Central Analytical and Applied Research Unit, College of Science, Sultan Qaboos University, Muscat, Oman.
| |
Collapse
|
14
|
Rathi R, Lavania M, Sawale M, Kukreti V, Kumar S, Lal B. Stimulation of an indigenous thermophillic anaerobic bacterial consortium for enhanced oil recovery. RSC Adv 2015. [DOI: 10.1039/c5ra10489k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Production of gases, VFAs, solvents and surfactants was achieved by thermophilic methanogenic consortium TERIL63, showing reduction in surface tension from 69 to 35 dynes cm−1. TERIL63 with an optimized nutrient recipe showed 15.49% EOR at 70 °C in a core flood study.
Collapse
Affiliation(s)
- Rohit Rathi
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| | - Meeta Lavania
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| | | | - Vipin Kukreti
- Institute of Reservoir Studies
- Oil and Natural Gas Corporation Limited
- Ahmedabad
- India
| | - Subir Kumar
- Institute of Reservoir Studies
- Oil and Natural Gas Corporation Limited
- Ahmedabad
- India
| | - Banwari Lal
- Microbial Biotechnology
- Environmental and Industrial Biotechnology Division
- The Energy and Resources Institute (TERI)
- New Delhi 110003
- India
| |
Collapse
|
15
|
Starting Up Microbial Enhanced Oil Recovery. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 142:1-94. [DOI: 10.1007/10_2013_256] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|