1
|
Bangash NK, Lee HB. A New Species and a New Record of Graphium from Freshwater Environment in Korea. MYCOBIOLOGY 2025; 53:321-330. [PMID: 40321623 PMCID: PMC12046611 DOI: 10.1080/12298093.2025.2450892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 12/21/2024] [Accepted: 01/03/2025] [Indexed: 05/08/2025]
Abstract
The genus Graphium belonging to order Microascales, comprises known wood pathogens that cause sapstain in timbers and wood degradation. However, this genus has been scarcely studied in Korea. Therefore, the current study was conducted to investigate the genus Graphium in freshwater environments as new habitat in Korea. Three strains, CNUFC PYW4-15, CNUFC BCW49, and CNUFC BCW48 were isolated from freshwater samples. Based on the morphological characteristics and phylogenetic analysis of the internal transcribed spacer (ITS) and translation elongation factor-1 alpha (TEF-1α) gene sequences, the isolated strain, CNUFC PYW4-15 was identified as Graphium carbonarium as an unrecorded species in Korea. While the strains CNUFC BCW49 and CNUFC BCW48 were discovered as a new species, named Graphium aquaticum sp. nov.
Collapse
Affiliation(s)
- Naila Khan Bangash
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Hyang Burm Lee
- Environmental Microbiology Laboratory, Department of Agricultural Biological Chemistry, College of Agriculture & Life Sciences, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
2
|
Bi Z, Wang T, Wang X, Xu H, Wu Y, Zhao C, Wu Z, Yu J, Zhang L. FpPEX5 and FpPEX7 are involved in the growth, reproduction, DON toxin production, and pathogenicity in Fusarium pseudograminearum. Int J Biol Macromol 2024; 270:132227. [PMID: 38734339 DOI: 10.1016/j.ijbiomac.2024.132227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/19/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Fusarium crown rot, caused by Fusarium pseudograminearum, is a devastating disease affecting the yield and quality of cereal crops. Peroxisomes are single-membrane organelles that play a critical role in various biological processes in eukaryotic cells. To functionally characterise peroxisome biosynthetic receptor proteins FpPEX5 and FpPEX7 in F. pseudograminearum, we constructed deletion mutants, ΔFpPEX5 and ΔFpPEX7, and complementary strains, ΔFpPEX5-C and ΔFpPEX7-C, and analysed the functions of FpPEX5 and FpPEX7 proteins using various phenotypic observations. The deletion of FpPEX5 and FpPEX7 resulted in a significant deficiency in mycelial growth and conidiation and blocked the peroxisomal targeting signal 1 and peroxisomal targeting signal 2 pathways, which are involved in peroxisomal matrix protein transport, increasing the accumulation of lipid droplets and reactive oxygen species. The deletion of FpPEX5 and FpPEX7 may reduce the formation of toxigenic bodies and decrease the pathogenicity of F. pseudograminearum. These results indicate that FpPEX5 and FpPEX7 play vital roles in the growth, asexual reproduction, virulence, and fatty acid utilisation of F. pseudograminearum. This study provides a theoretical basis for controlling stem rot in wheat.
Collapse
Affiliation(s)
- Zhuoyu Bi
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Tian Wang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Xiaofeng Wang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Hao Xu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Yueming Wu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Chen Zhao
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Zhen Wu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China
| | - Jinfeng Yu
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China.
| | - Li Zhang
- Department of Plant Pathology, Shandong Agriculture University, Taian 271018, China.
| |
Collapse
|
3
|
Fungal bioproducts for petroleum hydrocarbons and toxic metals remediation: recent advances and emerging technologies. Bioprocess Biosyst Eng 2023; 46:393-428. [PMID: 35943595 DOI: 10.1007/s00449-022-02763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/22/2022] [Indexed: 11/02/2022]
Abstract
Petroleum hydrocarbons and toxic metals are sources of environmental contamination and are harmful to all ecosystems. Fungi have metabolic and morphological plasticity that turn them into potential prototypes for technological development in biological remediation of these contaminants due to their ability to interact with a specific contaminant and/or produced metabolites. Although fungal bioinoculants producing enzymes, biosurfactants, polymers, pigments and organic acids have potential to be protagonists in mycoremediation of hydrocarbons and toxic metals, they can still be only adjuvants together with bacteria, microalgae, plants or animals in such processes. However, the sudden accelerated development of emerging technologies related to the use of potential fungal bioproducts such as bioinoculants, enzymes and biosurfactants in the remediation of these contaminants, has boosted fungal bioprocesses to achieve higher performance and possible real application. In this review, we explore scientific and technological advances in bioprocesses related to the production and/or application of these potential fungal bioproducts when used in remediation of hydrocarbons and toxic metals from an integral perspective of biotechnological process development. In turn, it sheds light to overcome existing technological limitations or enable new experimental designs in the remediation of these and other emerging contaminants.
Collapse
|
4
|
Di S, Fan S, Jiang F, Cong Z. A Unique P450 Peroxygenase System Facilitated by a Dual-Functional Small Molecule: Concept, Application, and Perspective. Antioxidants (Basel) 2022; 11:antiox11030529. [PMID: 35326179 PMCID: PMC8944620 DOI: 10.3390/antiox11030529] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/06/2022] [Accepted: 03/07/2022] [Indexed: 02/01/2023] Open
Abstract
Cytochrome P450 monooxygenases (P450s) are promising versatile oxidative biocatalysts. However, the practical use of P450s in vitro is limited by their dependence on the co-enzyme NAD(P)H and the complex electron transport system. Using H2O2 simplifies the catalytic cycle of P450s; however, most P450s are inactive in the presence of H2O2. By mimicking the molecular structure and catalytic mechanism of natural peroxygenases and peroxidases, an artificial P450 peroxygenase system has been designed with the assistance of a dual-functional small molecule (DFSM). DFSMs, such as N-(ω-imidazolyl fatty acyl)-l-amino acids, use an acyl amino acid as an anchoring group to bind the enzyme, and the imidazolyl group at the other end functions as a general acid-base catalyst in the activation of H2O2. In combination with protein engineering, the DFSM-facilitated P450 peroxygenase system has been used in various oxidation reactions of non-native substrates, such as alkene epoxidation, thioanisole sulfoxidation, and alkanes and aromatic hydroxylation, which showed unique activities and selectivity. Moreover, the DFSM-facilitated P450 peroxygenase system can switch to the peroxidase mode by mechanism-guided protein engineering. In this short review, the design, mechanism, evolution, application, and perspective of these novel non-natural P450 peroxygenases for the oxidation of non-native substrates are discussed.
Collapse
Affiliation(s)
- Siyu Di
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengxian Fan
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengjie Jiang
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiqi Cong
- CAS Key Laboratory of Biofuels, and Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; (S.D.); (S.F.); (F.J.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Correspondence: ; Tel.: +86-532-80662758
| |
Collapse
|
5
|
Ren H, Li H, Wang H, Huang H, Lu Z. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus Pseudallescheria boydii ZM01. Microorganisms 2020; 8:microorganisms8081190. [PMID: 32764240 PMCID: PMC7464125 DOI: 10.3390/microorganisms8081190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Tetrahydrofuran (THF) is widely used as a precursor for polymer syntheses and a versatile solvent in industries. THF is an environmental hazard and carcinogenic to humans. In the present study, a new THF-degrading filamentous fungus, Pseudallescheria boydii ZM01, was isolated and characterized. Strain ZM01 can tolerate a maximum THF concentration of 260 mM and can completely degrade 5 mM THF in 48 h, with a maximum THF degradation rate of 133.40 mg THF h−1 g−1 dry weight. Growth inhibition was not observed when the initial THF concentration was below 150 mM, and the maximum THF degradation rate was still maintained at 118.21 mg THF h−1 g−1 dry weight at 50 mM THF, indicating the great potential of this strain to degrade THF at high concentrations. The initial key metabolic intermediate 2-hydroxytetrahydrofuran was detected and identified by gas chromatography (GC) analyses for the first time during the THF degradation process. Analyses of the effects of initial pH, incubation temperature, and heavy metal ions on THF degradation revealed that strain ZM01 can degrade THF under a relatively wide range of conditions and has good degradation ability under low pH and Cu2+ stress, suggesting its adaptability and applicability for industrial wastewater treatment.
Collapse
|
6
|
Protein Expression Profile and Transcriptome Characterization of Penicillium expansum Induced by Meyerozyma guilliermondii. J FOOD QUALITY 2020. [DOI: 10.1155/2020/8056767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Antagonistic yeasts can inhibit fungal growth. In our previous research, Meyerozyma guilliermondii, one of the antagonistic yeasts, exhibited antagonistic activity against Penicillium expansum. However, the mechanisms, especially the molecular mechanisms of inhibiting activity of M. guilliermondii, are not clear. In this study, the protein expression profile and transcriptome characterization of P. expansum induced by M. guilliermondii were investigated. In P. expansum induced by M. guilliermondii, 66 proteins were identified as differentially expressed, among them six proteins were upregulated and 60 proteins were downregulated, which were associated with oxidative phosphorylation, ATP synthesis, basal metabolism, and response regulation. Simultaneously, a transcriptomic approach based on RNA-Seq was applied to annotate the genome of P. expansum and then studied the changes of gene expression in P. expansum treated with M. guilliermondii. The results showed that differentially expressed genes such as HEAT, Phosphoesterase, Polyketide synthase, ATPase, and Ras-association were significantly downregulated, in contrast to Cytochromes P450, Phosphatidate cytidylyltransferase, and Glutathione S-transferase, which were significantly upregulated. Interestingly, the downregulated differentially expressed proteins and genes have a corresponding relationship; these results revealed that these proteins and genes were important in the growth of P. expansum treated with M. guilliermondii.
Collapse
|
7
|
Qi M, Huang H, Zhang Y, Wang H, Li H, Lu Z. Novel tetrahydrofuran (THF) degradation-associated genes and cooperation patterns of a THF-degrading microbial community as revealed by metagenomic. CHEMOSPHERE 2019; 231:173-183. [PMID: 31129398 DOI: 10.1016/j.chemosphere.2019.05.137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/29/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Our understanding of the tetrahydrofuran (THF) degradation in complex environment is limited. The majority of THF degrading genes reported are group V soluble diiron monooxygenases and share greater than 95% homology with one another. In this study, we used sole-carbon-source incubation combined with high-throughput metagenomic sequencing to investigate this contaminant's degradation in environmental samples. We identified as-yet-uncultivated microbe from the genera Pseudonocardia and fungi Scedosporium sp. (Scedosporium sp. was successfully isolated) as THF degraders as containing THF degradation genes, while microbes from the genera Bordetella, Pandoraea and Rhodanobacter functioned as main cooperators by utilizing acidic intermediates and providing anti-acid mechanisms. Furthermore, a 9387-bp THF degradation cluster designated thmX from the as-yet-uncultivated Pseudonocardia (with 6 main ORFs and with 79-93% amino acid sequence identity with previously reported clusters) was discovered. We also found a THF-degrading related cytochrome P450 monooxygenase from the genus Scedosporium and predicted its cognate reductase for the first time. All the genes and clusters mentioned above were successfully amplified from samples and cloned into the suitable expression vectors. This study will provide novel insights for understanding of THF degradation mechanisms under acid stress conditions and mining new THF degradation genes.
Collapse
Affiliation(s)
- Minbo Qi
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hui Huang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Ying Zhang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Haixia Wang
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Hanbo Li
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China
| | - Zhenmei Lu
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou, 310058, PR China. http://
| |
Collapse
|
8
|
Vergara-Fernández A, Morales P, Scott F, Guerrero S, Yañez L, Mau S, Aroca G. Methane biodegradation and enhanced methane solubilization by the filamentous fungi Fusarium solani. CHEMOSPHERE 2019; 226:24-35. [PMID: 30913425 DOI: 10.1016/j.chemosphere.2019.03.116] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 03/12/2019] [Accepted: 03/17/2019] [Indexed: 06/09/2023]
Abstract
Methane is one of the most important greenhouse gases emitted from natural and human activities. It is scarcely soluble in water; thus, it has a low bioavailability for microorganisms able to degrade it. In this work, the capacity of the fungus Fusarium solani to improve the solubility of methane in water and to biodegrade methane was assayed. Experiments were performed in microcosms with vermiculite as solid support and mineral media, at temperatures between 20 and 35 °C and water activities between 0.9 and 0.95, using pure cultures of F. solani and a methanotrophic consortium (Methylomicrobium album and Methylocystis sp) as a control. Methane was the only carbon and energy source. Results indicate that using thermally inactivated biomass of F. solani, decreases the partition coefficient of methane in water up to two orders of magnitude. Moreover, F. solani can degrade methane, in fact at 35 °C and the highest water activity, the methane degradation rate attained by F. solani was 300 mg m-3 h-1, identical to the biodegradation rate achieved by the consortium of methanotrophic bacteria.
Collapse
Affiliation(s)
- Alberto Vergara-Fernández
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, Chile.
| | - Paulina Morales
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, Chile
| | - Felipe Scott
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, Chile
| | - Sichem Guerrero
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, Chile
| | - Luz Yañez
- Green Technology Research Group, Facultad de Ingeniería y Ciencias Aplicadas, Universidad de Los Andes, Chile
| | - Silvia Mau
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Chile
| | - Germán Aroca
- Escuela de Ingeniería Bioquímica, Facultad de Ingeniería, Pontificia Universidad Católica de Valparaíso, Chile
| |
Collapse
|
9
|
Ecology of Scedosporium Species: Present Knowledge and Future Research. Mycopathologia 2017; 183:185-200. [DOI: 10.1007/s11046-017-0200-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
|