1
|
Li W, Xin S, Deng W, Wang B, Liu X, Yuan Y, Wang S. Occurrence, spatiotemporal distribution patterns,partitioning and risk assessments of multiple pesticide residues in typical estuarine water environments in eastern China. WATER RESEARCH 2023; 245:120570. [PMID: 37703754 DOI: 10.1016/j.watres.2023.120570] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/31/2023] [Indexed: 09/15/2023]
Abstract
The low terrain and the prosperous agriculture in the east of China, have caused the accumulation of pesticide residues in the estuaries. Therefore, this study analyzed the spatiotemporal distribution and partition tendency of 106 pesticides based on their abundance, frequencies, and concentrations in the aquatic environment of 16 river estuaries in 7 major basins in the eastern China by using solid-phase extraction (SPE) with high-performance liquid chromatography tandem mass spectrometry (HPLC‒MS/MS) and gas chromatography tandem mass spectrometry (GC‒MS/MS). In addition, potential risk of multiple pesticides was also evaluated. The results showed that herbicides were the dominant pesticide type, while triazines were the predominate substance group of pesticide. In addition, triadimenol, vinclozolin, diethylatrazine, prometryn, thiamethoxam, atrazine, and metalachlor were the major pesticides in the water, while prometryn, metalachlor, and atrazine were the main pesticides in the sediment. The average total concentration of pesticide was 751.15 ng/L in the dry season, 651.17 ng/L in the wet season, and 617.37 ng/L in the normal season, respectively. The estuaries of the Huai River Basin, the Yangtze River Basin, the Hai River Basin, and the Yellow River Basin have been affected by the low pollution treatment efficiency, weak infrastructure, and agricultural/non-agricultural activities in eastern China, resulting in relatively serious pesticide pollution. The estuaries of Huaihe River, Yangtze River, Xiaoqing River, and Luanhe River had large pesticide abundance and comparatively severe pesticide pollution, while the estuaries of Tuhai River and Haihe River had heavy pesticide contamination in the sediment, which might be induced by historical sedimentary factors. The log KOC values showed that except for thioketone, other pesticides were relatively stable due to the adsorption by sediment. The ecological risk assessment results indicated that insecticides had a high risk. Teenagers were the most severely affected by the noncarcinogenic risk of pesticides, while adults were mostly affected by the carcinogenic risk of pesticides. Therefore, pesticide hazards in the water environment of estuaries in eastern China needs to be further close supervision.
Collapse
Affiliation(s)
- Wanting Li
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shuhan Xin
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Wenjing Deng
- Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, N.T., Hong Kong, China
| | - Bingbing Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Xinxin Liu
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Yin Yuan
- School of Life Science, Qufu Normal University, Qufu 273165, China
| | - Shiliang Wang
- School of Life Science, Qufu Normal University, Qufu 273165, China.
| |
Collapse
|
2
|
Ahmad S, Chandrasekaran M, Ahmad HW. Investigation of the Persistence, Toxicological Effects, and Ecological Issues of S-Triazine Herbicides and Their Biodegradation Using Emerging Technologies: A Review. Microorganisms 2023; 11:2558. [PMID: 37894216 PMCID: PMC10609637 DOI: 10.3390/microorganisms11102558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
S-triazines are a group of herbicides that are extensively applied to control broadleaf weeds and grasses in agricultural production. They are mainly taken up through plant roots and are transformed by xylem tissues throughout the plant system. They are highly persistent and have a long half-life in the environment. Due to imprudent use, their toxic residues have enormously increased in the last few years and are frequently detected in food commodities, which causes chronic diseases in humans and mammals. However, for the safety of the environment and the diversity of living organisms, the removal of s-triazine herbicides has received widespread attention. In this review, the degradation of s-triazine herbicides and their intermediates by indigenous microbial species, genes, enzymes, plants, and nanoparticles are systematically investigated. The hydrolytic degradation of substituents on the s-triazine ring is catalyzed by enzymes from the amidohydrolase superfamily and yields cyanuric acid as an intermediate. Cyanuric acid is further metabolized into ammonia and carbon dioxide. Microbial-free cells efficiently degrade s-triazine herbicides in laboratory as well as field trials. Additionally, the combinatorial approach of nanomaterials with indigenous microbes has vast potential and considered sustainable for removing toxic residues in the agroecosystem. Due to their smaller size and unique properties, they are equally distributed in sediments, soil, water bodies, and even small crevices. Finally, this paper highlights the implementation of bioinformatics and molecular tools, which provide a myriad of new methods to monitor the biodegradation of s-triazine herbicides and help to identify the diverse number of microbial communities that actively participate in the biodegradation process.
Collapse
Affiliation(s)
- Sajjad Ahmad
- Environmental Sustainability & Health Institute (ESHI), City Campus, School of Food Science & Environmental Health, Technological University Dublin, Grangegorman Lower, D07 EWV4 Dublin, Ireland
- Key Laboratory of Integrated Pest Management of Crop in South China, Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Agriculture and Rural Affairs, Ministry of Education, South China Agricultural University, Guangzhou 510642, China
- Department of Entomology, Faculty of Agriculture, University of Agriculture, Faisalabad 38000, Pakistan
| | - Murugesan Chandrasekaran
- Department of Food Science and Biotechnology, Sejong University, Neungdong-ro 209, Seoul 05006, Republic of Korea;
| | - Hafiz Waqas Ahmad
- Department of Food Engineering, Faculty of Agricultural Engineering & Technology, University of Agriculture, Faisalabad 38000, Pakistan;
| |
Collapse
|
3
|
Duc HD, Oanh NT, Khanh NTM. Thiobencarb Degradation by Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2 Isolated from Soil. Curr Microbiol 2023; 80:342. [PMID: 37725172 DOI: 10.1007/s00284-023-03456-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 08/23/2023] [Indexed: 09/21/2023]
Abstract
Thiobencarb has been extensively applied for weed control, resulting in severe environmental problems. In this study, thiobencarb degradation in liquid media and in soil by two bacterial strains, Pseudomonas sp. Th1 and Cupriavidus oxalaticus Th2, was investigated. Both bacterial isolates utilized the compound as a sole carbon, nitrogen and sulfur source. The utilization rates of thiobencarb by Pseudomonas sp. Th1 and C. oxalaticus Th2 in a liquid mineral medium were 1.02 ± 0.11 and 0.80 ± 0.07 µM/h at 100 µM, respectively. The determination of degradation and bacterial growth rates kinetics showed that the rates for pure thiobencarb followed the Michaelis-Menten model; meanwhile, the rates for thiobencarb in a commercial herbicide fitted well with the Edwards model. Their degradation by the mixed culture of both strains reduced the accumulation of intermediate products, including S-4-chlorobenzyl ethylthiocarbamate and 4-chlorobenzyl mercaptan, in media. The degradation by the mixed culture of these bacteria immobilized in rice straw was significantly higher than those of their free counterparts when determining in a packed bed bioreactor (P < 0.05). In addition, the inoculation of the mixed bacterial culture in soil significantly enhanced the degradation performance for both thiobencarb and propanil in a commercial herbicide. This study elucidates the differences in biodegradation of pure thiobencarb and thiobencarb in an herbicide.
Collapse
Affiliation(s)
- Ha Danh Duc
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam.
| | - Nguyen Thi Oanh
- Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Vietnam.
| | - Nguyen Thi Mai Khanh
- Can Tho University of Technology, 256 Nguyen Van Cu Street, An Hoa Ward, Ninh Kieu District, Can Tho City, Vietnam
| |
Collapse
|
4
|
Muñoz-Martínez S, Ahuatzi-Chacón D, Santoyo-Tepole F, Ruiz-Ordaz N, Galíndez-Mayer J, Juárez-Ramírez C. Biodegradation of the Insecticide Bendiocarb by Bacillus thuringiensis in a Packed Biofilm Reactor. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
5
|
Duc HD, Thuy NTD, Truc HTT, Nhu NTH, Oanh NT. Degradation of butachlor and propanil by Pseudomonas sp. strain But2 and Acinetobacter baumannii strain DT. FEMS Microbiol Lett 2021; 367:5902848. [PMID: 32897322 DOI: 10.1093/femsle/fnaa151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/03/2020] [Indexed: 12/29/2022] Open
Abstract
Herbicides have been extensively used globally, resulting in severe environmental pollution. Novel butachlor-degrading Pseudomonas sp. strain But2 isolated from soil can degrade butachlor regardless of the concentration and grows without a lag phase. Specific degradation was increased at 0.01-0.1 mM, and did not change significantly at higher concentrations. During degradation, 2-chloro-N-(2,6-diethylphenyl) acetamide, 2,6-diethylaniline, and 1,3-diethylbenzene were formed, which indicated that deamination occurred. Moreover, Pseudomonas sp. strains could tolerate propanil at up to 0.8 mM. The mixed bacterial culture of Pseudomonas sp. But2 and Acinetobacter baumannii DT (a propanil-degrading bacterial strain) showed highly effective biodegradation of both butachlor and propanil in liquid media and soil. For example, under treatment with the mixed culture, the half-lives of propanil and butachlor were 1 and 5 days, respectively, whereas those for the control were 3 and 15 days. The adjuvants present in herbicides reduced degradation in liquid media, but did not influence herbicide removal from the soil. The results showed that the mixed bacteria culture is a good candidate for the removal of butachlor and propanil from contaminated soils.
Collapse
Affiliation(s)
- Ha Danh Duc
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Dieu Thuy
- Center for Chemical analysis, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Huynh Thi Thanh Truc
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Huynh Nhu
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| | - Nguyen Thi Oanh
- Faculty of Engineering and Technology, Dong Thap University, 783 Pham Huu Lau Street, Cao Lanh City, Dong Thap Province, Viet Nam
| |
Collapse
|
6
|
Isolation and Identification of Pseudomonas sp. Strain DY-1 from Agricultural Soil and Its Degradation Effect on Prometryne. Curr Microbiol 2021; 78:1871-1881. [PMID: 33830318 DOI: 10.1007/s00284-021-02433-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 02/16/2021] [Indexed: 01/12/2023]
Abstract
Prometryne is a widely used herbicide in China to control annual grasses and broadleaf weeds. However, the stability of prometryne makes it difficult to be degraded, which poses a threat to human health. This study presents a bacterial strain isolated from soil samples with a prometryne application history, designated strain DY-1. Strain DY-1, identified as Pseudomonas sp., is capable of utilizing prometryne as a sole carbon source for growth and degrading 100% of prometryne within 48 h from an initial concentration of 50 mg L-1. To further optimize the degradation of prometryne, the prometryne concentration, temperature, pH, and salt concentration were examined. The optimal conditions for degradation of prometryne by strain DY-1 were an initial prometryne concentration of 50 mg L-1, 30 °C, pH 7-8, and NaCl concentration of 200 mg L-1. The same strain also degraded other s-triazine herbicides, including simetryne, ametryne, desmetryne, and metribuzin, under the same conditions. The biodegradation pathway of prometryne was established by isolating sulfoxide prometryne as the first metabolite and by the identification of sulfone prometryne and 2-hydroxy prometryne by liquid chromatography-mass spectrometry (LC-MS/MS). The results illustrated that strain DY-1 achieved the removal of prometryne by gradually oxidizing and hydrolyzing the methylthio groups. A bioremediation trial with contaminated soil and pot experiments showed that after treating the prometryne-contaminated soil with strain DY-1, the content of prometryne was significantly reduced (P < 0.05). This study provides an efficient bacterial strain and approach that could be potentially useful for detoxification and bioremediation of prometryne analogs.
Collapse
|
7
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Curiel-Quesada E, Santoyo-Tepole F. Degradation kinetics of carbendazim by Klebsiella oxytoca, Flavobacterium johnsoniae, and Stenotrophomonas maltophilia strains. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:28518-28526. [PMID: 31912400 DOI: 10.1007/s11356-019-07069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
The fungicide carbendazim is an ecotoxic pollutant frequently found in water reservoirs. The ability of microorganisms to remove pollutants found in diverse environments, soil, water, or air is well documented. Although microbial communities have many advantages in bioremediation processes, in many cases, those with the desired capabilities may be slow-growing or have low pollutant degradation rates. In these cases, the manipulation of the microbial community through enrichment with specialized microbial strains showing high specific growth rates and high rates and efficiencies of pollutant degradation is desirable. In this work, bacteria of the genera Klebsiella, Flavobacterium, and Stenotrophomonas, isolated from the biofilm attached to the packed zones of a biofilm reactor, were able to grow individually in selective medium containing carbendazim. In the three bacteria studied, the mheI gene encoding the first enzyme involved in the degradation of the fungicide carbendazim was found. Studying the dynamics of growth and carbendazim degradation of the three bacteria, the effect of co-formulants was also evaluated. The pure compound and a commercial formulation of carbendazim were used as substrates. Finally, the study made it possible to define the biokinetic advantages of these strains for amendment of microbial communities.
Collapse
Affiliation(s)
- María Luisa Alvarado-Gutiérrez
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico.
| | - Nora Ruiz-Ordaz
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico
| | - Juvencio Galíndez-Mayer
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Adolfo López Mateos, Instituto Politécnico Nacional, Av. Wilfrido Massieu S/N, Ciudad de México, Mexico.
| | - Everardo Curiel-Quesada
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, Mexico
| | - Fortunata Santoyo-Tepole
- Escuela Nacional de Ciencias Biológicas, Unidad Profesional Lázaro Cárdenas, Instituto Politécnico Nacional, Carpio y Plan de Ayala, Ciudad de México, Mexico
| |
Collapse
|
8
|
Dorado-Martínez A, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, Ramos-Monroy O. Effect of propanil, linuron, and dicamba on the degradation kinetics of 2,4-dichlorophenoxyacetic acid by Burkholderia sp. A study by differential analysis of 2,4-dichlorophenoxyacetic acid degradation data. Eng Life Sci 2017; 17:1088-1096. [PMID: 32624736 DOI: 10.1002/elsc.201700060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 06/08/2017] [Accepted: 07/04/2017] [Indexed: 11/07/2022] Open
Abstract
The successive application of distinct pesticides, or mixtures of them, is a frequent practice that could adversely affect the microbial species inhabiting soil and aquatic ecosystems. The ability of soil or aquatic microbiota to degrade a pesticide could be affected by the presence of another. If the degradation rate of the first compound is inhibited, its dissipation half-life in the environment could be hazardously enlarged. Few studies have been made to quantify the impact on the biodegradation rate of pesticides in soils or water by the presence of other pesticides. In this work, a method for assessing the effect of a pesticide on the biodegradation rate of another, measuring its effect on the biodegradation kinetics of a single bacterial strain is presented. The mathematical analysis is a powerful tool to study the stoichiometry and kinetics of microbial processes, which was used to evaluate independently, in detail, the effect of three pesticides (propanil, linuron, and dicamba) on the biodegradation kinetics of 2,4-dichlorophenoxyacetic acid by a strain of Burkholderia sp. It was evidenced that linuron and dicamba caused a decay of more than 40% in the top instantaneous degradation rate of 2,4-dichlorophenoxyacetic acid, while propanil showed a minimal effect.
Collapse
Affiliation(s)
| | - Nora Ruiz-Ordaz
- Instituto Politécnico Nacional Escuela Nacional de Ciencias Biológicas Mexico City Mexico
| | | | | | - Oswaldo Ramos-Monroy
- Instituto Politécnico Nacional Escuela Nacional de Ciencias Biológicas Mexico City Mexico
| |
Collapse
|
9
|
Alvarado-Gutiérrez ML, Ruiz-Ordaz N, Galíndez-Mayer J, Santoyo-Tepole F, Curiel-Quesada E, García-Mena J, Ahuatzi-Chacón D. Kinetics of carbendazim degradation in a horizontal tubular biofilm reactor. Bioprocess Biosyst Eng 2017; 40:519-528. [PMID: 28005180 DOI: 10.1007/s00449-016-1717-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 12/02/2016] [Indexed: 11/29/2022]
Abstract
The fungicide carbendazim is an ecotoxic agent affecting aquatic biota. Due to its suspected hormone-disrupting effects, it is considered a "priority hazard substance" by the Water Framework Directive of the European Commission, and its degradation is of major concern. In this work, a horizontal tubular biofilm reactor (HTBR) operating in plug-flow regime was used to study the kinetics of carbendazim removal by an acclimated microbial consortium. The reactor was operated in steady state continuous culture at eight different carbendazim loading rates. The concentrations of the fungicide were determined at several distances of the HTBR. At the loading rates tested, the highest instantaneous removal rates were observed in the first section of the tubular biofilm reactor. No evidence of inhibition of the catabolic activity of the microbial community was found. Strains of the genera Flectobacillus, Klebsiella, Stenotrophomonas, and Flavobacterium were identified in the biofilm; the last three degrade carbendazim in axenic culture.
Collapse
Affiliation(s)
| | - Nora Ruiz-Ordaz
- Departamento de Ingeniería, Instituto Politécnico Nacional, ENCB, México, Mexico.
| | | | - Fortunata Santoyo-Tepole
- Central de Instrumentación de Espectroscopia, Instituto Politécnico Nacional, ENCB, México, Mexico
| | | | - Jaime García-Mena
- Departamento de Genética y Biología Molecular, Cinvestav, Instituto Politécnico Nacional, México, Mexico
| | | |
Collapse
|
10
|
Liu J, Hua R, Lv P, Tang J, Wang Y, Cao H, Wu X, Li QX. Novel hydrolytic de-methylthiolation of the s-triazine herbicide prometryn by Leucobacter sp. JW-1. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 579:115-123. [PMID: 27866738 DOI: 10.1016/j.scitotenv.2016.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 10/30/2016] [Accepted: 11/01/2016] [Indexed: 06/06/2023]
Abstract
s-Triazine herbicides have been widely used in recent decades and caused serious concern over contamination of groundwater, surface water and soil. A novel bacterial strain JW-1 was isolated from activated sludge and identified as Leucobacter sp. based on comparative morphology, physiological characteristics and comparison of the 16S rDNA gene sequence. JW-1 was capable of using methylthio-s-triazine prometryn as a sole source of carbon and energy in pure culture. Favorable conditions for prometryn degradation were found at pH7.0-9.0 and temperature of 37-42°C. The degradation half-life of prometryn at 50mgL-1 was remarkably as short as 1.1h, and increased to 6.0h when the initial concentration increased to 400mgL-1. The strain JW-1 could degrade 100% of ametryn, 99% of simetryn, 41% of propazine, 43% of atrazine, 28% of simazine, 12% of terbutylhylazine, 10% of prometon and 13% of atraton at 50mgL-1 of each herbicide in 2days. Prometryn was converted to 2-hydroxypropazine and methanthiol via a novel hydrolysis pathway. 2-Hydroxypropazine was then transformed to N-isopropylammelide and the final product cyanuric acid via two sequential deamination reactions. In addition to biodegradation by Leucobacter sp. JW-1, the hydrolytic de-methylthiolation would be valuable in biocatalysis.
Collapse
Affiliation(s)
- Junwei Liu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Rimao Hua
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Pei Lv
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Jun Tang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Yi Wang
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Haiqun Cao
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China
| | - Xiangwei Wu
- College of Resources and Environment, Anhui Agricultural University, Key Laboratory of Agri-food Safety of Anhui Province, Hefei 230036, PR China.
| | - Qing X Li
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Honolulu, HI 957822, USA
| |
Collapse
|
11
|
Borowik A, Wyszkowska J, Kucharski J, Baćmaga M, Tomkiel M. Response of microorganisms and enzymes to soil contamination with a mixture of terbuthylazine, mesotrione, and S-metolachlor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:1910-1925. [PMID: 27798799 PMCID: PMC5306303 DOI: 10.1007/s11356-016-7919-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 10/16/2016] [Indexed: 05/17/2023]
Abstract
The research objective has been to evaluate the effect, unexplored yet, of a mixture of three active ingredients of the herbicide Lumax 537.5 SE: terbuthylazine (T), mesotrione (M), and S-metolachlor (S) on counts of soil microorganisms, structure of microbial communities, activity of soil enzymes as well as the growth and development of maize. The research was based on a pot experiment established on sandy soil with pHKCl 7.0. The herbicide was applied to soil once, in the form of liquid emulsion dosed as follows: 0.67, 13.4, 26.9, 53.8, 108, 215, and 430 mg kg-1 of soil, converted per active substance (M + T + S). The control sample consisted of soil untreated with herbicide. The results showed that the mixture of the above active substances caused changes in values of the colony development (CD) indices of organotrophic bacteria, actinomycetes, and fungi and ecophysiological diversity (EP) indices of fungi. Changes in the ecophysiological diversity index of organotrophic bacteria and actinomycetes were small. The M + T + S mixture was a strong inhibitor of dehydrogenases, to a less degree catalase, urease, β-glucosidase, and arylsulfatase, while being a weak inhibitor of phosphatases. The actual impact was correlated with the dosage. The M + T + S mixture inhibited the growth and development of maize. The herbicide Lumax 537.5 SE should be applied strictly in line with the regime that defines its optimum dosage. Should its application adhere to the manufacturer's instructions, the herbicide would not cause any serious disturbance in soil homeostasis. However, its excessive quantities (from 13.442 to 430.144 mg kg-1 DM of soil) proved to be harmful to the soil environment.
Collapse
Affiliation(s)
- Agata Borowik
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jadwiga Wyszkowska
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Jan Kucharski
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Małgorzata Baćmaga
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| | - Monika Tomkiel
- Department of Microbiology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 3, 10-727 Olsztyn, Poland
| |
Collapse
|