1
|
An X, Li N, Zhang L, Xu Z, Zhang S, Zhang Q. New insights into the typical nitrogen-containing heterocyclic compound-quinoline degradation and detoxification by microbial consortium: Integrated pathways, meta-transcriptomic analysis and toxicological evaluation. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133158. [PMID: 38061124 DOI: 10.1016/j.jhazmat.2023.133158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 02/08/2024]
Abstract
As the primary source of COD in industrial wastewater, quinoline has aroused increasing attention because of its potential teratogenic, carcinogenic, and mutagenic effects in the environment. The activated sludge isolate quinoline-degrading microbial consortium (QDMC) efficiently metabolizes quinoline. However, the molecular underpinnings of the degradation mechanism of quinoline by QDMC have not been elucidated. High-throughput sequencing revealed that the dominant genera included Diaphorobacter, Bacteroidia, Moheibacter and Comamonas. Furthermore, a positive strong correlation was observed between the key bacterial communities (Diaphorobact and Bacteroidia) and quinoline degradation. According to metatranscriptomics, genes associated with quorum sensing, ABC transporters, component systems, carbohydrate, aromatic compound degradation, energy metabolism and amino metabolism showed high expression, thus improving adaptability of microbial community to quinoline stress. In addition, the mechanism of QDMC in adapting and resisting to extreme environmental conditions in line with the corresponding internal functional properties and promoting biogegradation efficiency was illustrated. Based on the identified products, QDMC effectively mineralized quinoline into low-toxicity metabolites through three major metabolic pathways, including hydroxyquinoline, 1,2,3,4-H-quinoline, 5,6,7,8-tetrahydroquinoline and 1-oxoquinoline pathways. Finally, toxicological, genotoxicity and phytotoxicity studies supported the detoxification of quinoline by the QDMC. This study provided a promising approach for the stable, environmental-friendly and efficient bioremediation applications for quinoline-containing wastewater.
Collapse
Affiliation(s)
- Xuejiao An
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Ningjian Li
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Lizhen Zhang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Zihang Xu
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Shulin Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China
| | - Qinghua Zhang
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang 330045, PR China.
| |
Collapse
|
2
|
Pérez-Pantoja D, Nikel PI, Chavarría M, de Lorenzo V. Transcriptional control of 2,4-dinitrotoluene degradation in Burkholderia sp. R34 bears a regulatory patch that eases pathway evolution. Environ Microbiol 2021; 23:2522-2531. [PMID: 33734558 DOI: 10.1111/1462-2920.15472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 11/26/2022]
Abstract
The dnt pathway of Burkholderia sp. R34 is in the midst of an evolutionary journey from its ancestral, natural substrate (naphthalene) towards a new xenobiotic one [2,4-dinitrotoluene (DNT)]. The gene cluster encoding the leading multicomponent ring dioxygenase (DntA) has activity on the old and the new substrate, but it is induced by neither. Instead, the transcriptional factor encoded by the adjacent gene (dntR) activates expression of the dnt cluster upon addition of salicylate, one degradation intermediate of the ancestral naphthalene route but not any longer a substrate/product of the evolved DntA enzyme. Fluorescence of cells bearing dntA-gfp fusions revealed that induction of the dnt genes by salicylate was enhanced upon exposure to bona fide DntA substrates, i.e., naphthalene or DNT. Such amplification was dependent on effective dioxygenation of these pathway-specific head compounds, which thereby fostered expression of the cognate catabolic operon. The phenomenon seems to happen not through direct binding to a cognate transcriptional factor but through the interplay of a non-specific regulator with a substrate-specific enzyme. This regulatory scenario may ease transition of complete catabolic operons (i.e. enzymes plus regulatory devices) from one substrate to another without loss of fitness during the evolutionary roadmap between two optimal specificities.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Programa Institucional de Fomento a la Investigación, Desarrollo e Innovación (PIDi), Universidad Tecnológica Metropolitana, Santiago, 8940577, Chile
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - Max Chavarría
- Escuela de Química and CIPRONA, Universidad de Costa Rica, San José, 2060, Costa Rica
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, 28049, Spain
| |
Collapse
|
3
|
Wang P, Zhang Y, Jin J, Wang T, Wang J, Jiang B. A high-efficiency phenanthrene-degrading Diaphorobacter sp. isolated from PAH-contaminated river sediment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:140455. [PMID: 32758981 DOI: 10.1016/j.scitotenv.2020.140455] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/18/2020] [Accepted: 06/21/2020] [Indexed: 05/15/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are typical persistent organic pollutants that accumulate in the environment, mainly from anthropogenic activities. Microbial degradation is the main pathway of PAHs degradation in the natural environment. Therefore, the widen of the available bank of microbial resources and exploration of the molecular degradation mechanisms of PAHs are crucial to the proper management of PAHs-polluted sites. In this work, a bacterial strain, YM-6, which has a high ability to utilize phenanthrene (PHE) as its sole source of carbon and energy, was isolated from sediment contaminated with PAHs. The strain YM-6 was found to degrade 96.3% of 100 mg/L of PHE in liquid cultures within 52 h. The strain was identified as Diaphorobacter sp. by 16S rDNA sequencing. The optimum growth conditions of the YM-6 strain were studied, and the results indicated that the optimum growth temperature of the strain was 30 °C, and the optimum growth pH was 7. The stain is well-suited for high-temperature stress (40 °C), and it could withstand 400 mg/L of PHE. The strain's PHE metabolism was assayed using GC-MS analyses. The results revealed that the YM-6 strain metabolized PHE via the phthalic acid pathway because the intermediates, such as phthalic acid, diethyl ester and phthalaldehydic acid, methyl ester, were detected. The use of this strain may be an attractive alternative for the bioremediation of polycyclic aromatic hydrocarbons in an aquatic environment.
Collapse
Affiliation(s)
- Ping Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China; Engineering Research Center of Biomembrane Water Purification and Utilization Technology, Ministry of Education, Maanshan 243002, China.
| | - Yongmin Zhang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Jie Jin
- Appraisal Center for Environment & Engineering, Ministry of Ecology and Environment,Beijing 100012,China
| | - Tianhui Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Jie Wang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Bingyu Jiang
- College of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| |
Collapse
|
4
|
Gao YZ, Liu XY, Liu H, Guo Y, Zhou NY. A Bph-Like Nitroarene Dioxygenase Catalyzes the Conversion of 3-Nitrotoluene to 3-Methylcatechol by Rhodococcus sp. Strain ZWL3NT. Appl Environ Microbiol 2020; 86:e02517-19. [PMID: 31811044 PMCID: PMC6997744 DOI: 10.1128/aem.02517-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 11/27/2019] [Indexed: 11/20/2022] Open
Abstract
All nitroarene dioxygenases reported so far originated from Nag-like naphthalene dioxygenase of Gram-negative strains, belonging to group III of aromatic ring-hydroxylating oxygenases (RHOs). Gram-positive Rhodococcus sp. strain ZWL3NT utilizes 3-nitrotoluene (3NT) as the sole source of carbon, nitrogen, and energy for growth. It was also reported that 3NT degradation was constitutive and the intermediate was 3-methylcatechol. In this study, a gene cluster (bndA1A2A3A4) encoding a multicomponent dioxygenase, belonging to group IV of RHOs, was identified. Recombinant Rhodococcus imtechensis RKJ300 carrying bndA1A2A3A4 exhibited 3NT dioxygenase activity, converting 3NT into 3-methylcatechol exclusively, with nitrite release. The identity of the product 3-methylcatechol was confirmed using liquid chromatography-mass spectrometry. A time course of biotransformation showed that the 3NT consumption was almost equal to the 3-methylcatechol accumulation, indicating a stoichiometry conversion of 3NT to 3-methylcatechol. Unlike reported Nag-like dioxygenases transforming 3NT into 4-methylcatechol or both 4-methylcatechol and 3-methylcatechol, this Bph-like dioxygenase (dioxygenases homologous to the biphenyl dioxygenase from Rhodococcus sp. strain RHA1) converts 3NT to 3-methylcatechol without forming 4-methylcatechol. Furthermore, whole-cell biotransformation of strain RKJ300 with bndA1A2A3A4 and strain ZWL3NT exhibited the extended and same substrate specificity against a number of nitrobenzene or substituted nitrobenzenes, suggesting that BndA1A2A3A4 is likely the native form of 3NT dioxygenase in strain ZWL3NT.IMPORTANCE Nitroarenes are synthetic molecules widely used in the chemical industry. Microbial degradation of nitroarenes has attracted extensive attention, not only because this class of xenobiotic compounds is recalcitrant in the environment but also because the microbiologists working in this field are curious about the evolutionary origin and process of the nitroarene dioxygenases catalyzing the initial reaction in the catabolism. In contrast to previously reported nitroarene dioxygenases from Gram-negative strains, which originated from a Nag-like naphthalene dioxygenase, the 3-nitrotoluene (3NT) dioxygenase in this study is from a Gram-positive strain and is an example of a Bph-like nitroarene dioxygenase. The preference of hydroxylation of this enzyme at the 2,3 positions of the benzene ring to produce 3-methylcatechol exclusively from 3NT is also a unique property among the studied nitroarene dioxygenases. These findings will enrich our understanding of the diversity and origin of nitroarene dioxygenase in microorganisms.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao-Yang Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hong Liu
- Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism & School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
5
|
Ahmad S, Pathak VV, Kothari R, Kumar A, Naidu Krishna SB. Optimization of nutrient stress using C. pyrenoidosa for lipid and biodiesel production in integration with remediation in dairy industry wastewater using response surface methodology. 3 Biotech 2018; 8:326. [PMID: 30034990 PMCID: PMC6050177 DOI: 10.1007/s13205-018-1342-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 07/07/2018] [Indexed: 01/15/2023] Open
Abstract
The present study illustrates optimization and synergetic potential of alga Chlorella pyrenoidosa for lipid production and remediation of Dairy industry wastewater (DIWW) through response surface methodology (RSM). Maximum lipid productivity of 34.41% was obtained under 50% DIWW supplemented with 0 mg L-1 nitrate (NO3-), and 50 mg L-1 phosphate (PO4-3). While maximum biomass productivity (1.54 g L-1) was obtained with 50% DIWW supplemented with 100 mg L-1 NO3-, and 50 mg L-1, PO4-3. Maximum removal of COD (43.47%), NO3- (99.80%) and PO4-3 (98.24%) was achieved with 8th run (75% DIWW, 150 mg L-1 NO3-, 75 mg L-1 PO4-3), 15th run (50% DIWW, 0 mg L-1 NO3-, 50 mg L-1, PO4- 3) followed by 1st run (25% DIWW, 50 mg L-1 NO3-, and 25 mg L-1, PO4-3), respectively. Lipid (bio-oil) obtained from 15th run of experiment was converted in biodiesel through base catalyze transesterification process. Fatty acid methyl ester (FAME) analysis of biodiesel confirmed the presence of major fatty acids in C. pyrenoidosa grown in DIWW were C11:0, C14:0, C16:0, C16:1, C18:1 and C18:2. Results of study clearly demonstrate enhanced growth and lipid accumulation by C. pyrenoidosa in surplus PO4-3 and limitation of NO3- sources with DIWW and its suitability as potential alternative for commercial utilization.
Collapse
Affiliation(s)
- Shamshad Ahmad
- Bioenergy and Wastewater Treatment Laboratory, Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226 025 India
| | - Vinayak V. Pathak
- Department of Chemistry, Manav Rachna University, Faridabad, Haryana India
| | - Richa Kothari
- Bioenergy and Wastewater Treatment Laboratory, Department of Environmental Science, School for Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Lucknow, Uttar Pradesh 226 025 India
- Department of Environmental Sciences, Central University of Jammu, RahyaSuchani (Bagla), Samba, Jammu, Jammu and Kashmir 181143 India
| | - Ashwani Kumar
- Metagenomics and Secretomics Research Laboratory, Department of Botany, Dr. Harisingh Gour University (A Central University), Sagar, Madhya Pradesh 470003 India
| | - Suresh Babu Naidu Krishna
- Department of Biomedical and Clinical Technology, Durban University of Technology, Durban, South Africa
| |
Collapse
|
6
|
Hong Y, Yi T, Tan X, Su J, Ge F. Microbes affected the TYLCCNV transmission rate by the Q biotype whitefly under high O 3. Sci Rep 2017; 7:14412. [PMID: 29089507 PMCID: PMC5663716 DOI: 10.1038/s41598-017-14023-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 10/03/2017] [Indexed: 11/08/2022] Open
Abstract
Ozone (O3) is a major air pollutant that has a profound effect on whole ecosystems. In this study we studied how hO3 affected the transmission of the Tomato yellow leaf curl China virus (TYLCCNV), a begomovirus, by the Q biotype Bemisia tabaci in a persistent, circulative manner. We found hO3 affected the transmission of TYLCCNV via the effect of it on the microbial community of the transmitting insect, such as Candidatus Hamiltonella, Ralstonia, Diaphorobacter, Caldilineaceae, Deinococcus, Rickettsia, Thysanophora penicillioides and Wallemia ichthyophaga. We concluded that hO3 decreased the resistance of acquiring virus tomatoes, and decreased the immune response and increased the endurance to extreme environments of viruliferous whiteflies by altering the composition and abundance of the microbial environments inside the body and on the surface of whitefly, as a result, it enhanced the TYLCV transmission rate by the Q biotype whitefly.
Collapse
Affiliation(s)
- Yanyun Hong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Pests, College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Xiaoling Tan
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jianwei Su
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Mardani G, Mahvi AH, Hashemzadeh-Chaleshtori M, Naseri S, Dehghani MH, Ghasemi-Dehkordi P. Application of Genetically Engineered Dioxygenase Producing Pseudomonas putida on Decomposition of Oil from Spiked Soil. Jundishapur J Nat Pharm Prod 2017; In Press. [DOI: 10.5812/jjnpp.64313] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022] Open
|
8
|
Kumari A, Singh D, Ramaswamy S, Ramanathan G. Structural and functional studies of ferredoxin and oxygenase components of 3-nitrotoluene dioxygenase from Diaphorobacter sp. strain DS2. PLoS One 2017; 12:e0176398. [PMID: 28448625 PMCID: PMC5407579 DOI: 10.1371/journal.pone.0176398] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/10/2017] [Indexed: 11/23/2022] Open
Abstract
3-nitrotoluene dioxygenase (3NTDO) from Diaphorobacter sp. strain DS2 catalyses the conversion of 3-nitrotoluene (3NT) into a mixture of 3- and 4-methylcatechols with release of nitrite. We report here, X-ray crystal structures of oxygenase and ferredoxin components of 3NTDO at 2.9 Å and 2.4 Å, respectively. The residues responsible for nitrite release in 3NTDO were further probed by four single and two double mutations in the catalytic site of α-subunit of the dioxygenase. Modification of Val 350 to Phe, Ile 204 to Ala, and Asn258 to Val by site directed mutagenesis resulted in inactive enzymes revealing the importance of these residues in catalysis. Docking studies of meta nitrotoluene to the active site of 3NTDO suggested possible orientations of binding that favor the formation of 3-methylcatechol (3MC) over 4-methylcatechol energetically. The electron transfer pathway from ferredoxin subunit to the active site of the oxygenase subunit is also proposed.
Collapse
Affiliation(s)
- Archana Kumari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - Deepak Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| | - S Ramaswamy
- Institute for Stem Cell Biology and Regenerative Medicine, National Center for Biological Science, Tata Institute of Fundamental Research, Bangalore, Karnataka, India
| | - Gurunath Ramanathan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kalyanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
9
|
Kundu D, Hazra C, Chaudhari A. Statistical modeling and optimization of culture conditions by response surface methodology for 2,4- and 2,6-dinitrotoluene biodegradation using Rhodococcus pyridinivorans NT2. 3 Biotech 2016; 6:155. [PMID: 28330227 PMCID: PMC4951380 DOI: 10.1007/s13205-016-0468-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Accepted: 07/04/2016] [Indexed: 11/29/2022] Open
Abstract
To improve biodegradability (% biodegradation) and specific growth rate of Rhodococcus pyridinivorans NT2, culture medium and environmental parameters were screened and optimized using the statistical design techniques of Plackett-Burman and response surface methodology. Of the process variables screened, DNTs (2,4-DNT and 2,6-DNT), MgSO4·7H2O, temperature and inoculum size (O.D.) were selected as the most important (P value <0.05) factors. In multiresponse analysis of central composite design, medium formulation consisting of 474/470 mg l-1 2,4-DNT/2,6-DNT, 0.11 g l-1 MgSO4·7H2O, 37.5 °C temperature and 1.05 OD inoculum size were found to predict maximum % degradation and specific growth rate of 97.55 % and 0.19 h-1, respectively. The validity of the optimized variables was verified in shake flasks. The optimized media significantly shortened the time required for biodegradation of DNTs while providing a nearly 30 % (for 2,4-DNT) and 70 % (for 2,6-DNT) increased biodegradation along with 5.64-fold increase in specific growth rate for both DNTs.
Collapse
Affiliation(s)
- Debasree Kundu
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| | - Chinmay Hazra
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India
| | - Ambalal Chaudhari
- School of Life Sciences, North Maharashtra University, Jalgaon, 425 001, Maharashtra, India.
| |
Collapse
|
10
|
Gao YZ, Liu H, Chao HJ, Zhou NY. Constitutive Expression of a Nag-Like Dioxygenase Gene through an Internal Promoter in the 2-Chloronitrobenzene Catabolism Gene Cluster of Pseudomonas stutzeri ZWLR2-1. Appl Environ Microbiol 2016; 82:3461-3470. [PMID: 27037114 PMCID: PMC4959172 DOI: 10.1128/aem.00197-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The gene cluster encoding the 2-chloronitrobenzene (2CNB) catabolism pathway in Pseudomonas stutzeri ZWLR2-1 is a patchwork assembly of a Nag-like dioxygenase (dioxygenase belonging to the naphthalene dioxygenase NagAaAbAcAd family from Ralstonia sp. strain U2) gene cluster and a chlorocatechol catabolism cluster. However, the transcriptional regulator gene usually present in the Nag-like dioxygenase gene cluster is missing, leaving it unclear how this cluster is expressed. The pattern of expression of the 2CNB catabolism cluster was investigated here. The results demonstrate that the expression was constitutive and not induced by its substrate 2CNB or salicylate, the usual inducer of expression in the Nag-like dioxygenase family. Reverse transcription-PCR indicated the presence of at least one transcript containing all the structural genes for 2CNB degradation. Among the three promoters verified in the gene cluster, P1 served as the promoter for the entire catabolism operon, but the internal promoters P2 and P3 also enhanced the transcription of the genes downstream. The P3 promoter, which was not previously defined as a promoter sequence, was the strongest of these three promoters. It drove the expression of cnbAcAd encoding the dioxygenase that catalyzes the initial reaction in the 2CNB catabolism pathway. Bioinformatics and mutation analyses suggested that this P3 promoter evolved through the duplication of an 18-bp fragment and introduction of an extra 132-bp fragment. IMPORTANCE The release of many synthetic compounds into the environment places selective pressure on bacteria to develop their ability to utilize these chemicals to grow. One of the problems that a bacterium must surmount is to evolve a regulatory device for expression of the corresponding catabolism genes. Considering that 2CNB is a xenobiotic that has existed only since the onset of synthetic chemistry, it may be a good example for studying the molecular mechanisms underlying rapid evolution in regulatory networks for the catabolism of synthetic compounds. The 2CNB utilizer Pseudomonas stutzeri ZWLR2-1 in this study has adapted itself to the new pollutant by evolving the always-inducible Nag-like dioxygenase into a constitutively expressed enzyme, and its expression has escaped the influence of salicylate. This may facilitate an understanding of how bacteria can rapidly adapt to the new synthetic compounds by evolving its expression system for key enzymes involved in the degradation of a xenobiotic.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Liu
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Hong-Jun Chao
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
| | - Ning-Yi Zhou
- Key Laboratory of Agricultural and Environmental Microbiology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
11
|
A Review on the Genetics of Aliphatic and Aromatic Hydrocarbon Degradation. Appl Biochem Biotechnol 2015; 178:224-50. [DOI: 10.1007/s12010-015-1881-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
|
12
|
Ricken B, Kolvenbach BA, Corvini PFX. Ipso-substitution — the hidden gate to xenobiotic degradation pathways. Curr Opin Biotechnol 2015; 33:220-7. [DOI: 10.1016/j.copbio.2015.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 03/11/2015] [Accepted: 03/12/2015] [Indexed: 11/25/2022]
|
13
|
Selection for growth on 3-nitrotoluene by 2-nitrotoluene-utilizing Acidovorax sp. strain JS42 identifies nitroarene dioxygenases with altered specificities. Appl Environ Microbiol 2014; 81:309-19. [PMID: 25344236 DOI: 10.1128/aem.02772-14] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Acidovorax sp. strain JS42 uses 2-nitrotoluene as a sole source of carbon and energy. The first enzyme of the degradation pathway, 2-nitrotoluene 2,3-dioxygenase, adds both atoms of molecular oxygen to 2-nitrotoluene, forming nitrite and 3-methylcatechol. All three mononitrotoluene isomers serve as substrates for 2-nitrotoluene dioxygenase, but strain JS42 is unable to grow on 3- or 4-nitrotoluene. Using both long- and short-term selections, we obtained spontaneous mutants of strain JS42 that grew on 3-nitrotoluene. All of the strains obtained by short-term selection had mutations in the gene encoding the α subunit of 2-nitrotoluene dioxygenase that changed isoleucine 204 at the active site to valine. Those strains obtained by long-term selections had mutations that changed the same residue to valine, alanine, or threonine or changed the alanine at position 405, which is just outside the active site, to glycine. All of these changes altered the regiospecificity of the enzymes with 3-nitrotoluene such that 4-methylcatechol was the primary product rather than 3-methylcatechol. Kinetic analyses indicated that the evolved enzymes had enhanced affinities for 3-nitrotoluene and were more catalytically efficient with 3-nitrotoluene than the wild-type enzyme. In contrast, the corresponding amino acid substitutions in the closely related enzyme nitrobenzene 1,2-dioxygenase were detrimental to enzyme activity. When cloned genes encoding the evolved dioxygenases were introduced into a JS42 mutant lacking a functional dioxygenase, the strains acquired the ability to grow on 3-nitrotoluene but with significantly longer doubling times than the evolved strains, suggesting that additional beneficial mutations occurred elsewhere in the genome.
Collapse
|
14
|
Yang Y, Wang J, Liao J, Xie S, Huang Y. Abundance and diversity of soil petroleum hydrocarbon-degrading microbial communities in oil exploring areas. Appl Microbiol Biotechnol 2014; 99:1935-46. [PMID: 25236802 DOI: 10.1007/s00253-014-6074-z] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Revised: 09/02/2014] [Accepted: 09/03/2014] [Indexed: 01/23/2023]
Abstract
Alkanes and polycyclic aromatic hydrocarbons (PAHs) are the commonly detected petroleum hydrocarbon contaminants in soils in oil exploring areas. Hydrocarbon-degrading genes are useful biomarks for estimation of the bioremediation potential of contaminated sites. However, the links between environmental factors and the distribution of alkane and PAH metabolic genes still remain largely unclear. The present study investigated the abundances and diversities of soil n-alkane and PAH-degrading bacterial communities targeting both alkB and nah genes in two oil exploring areas at different geographic regions. A large variation in the abundances and diversities of alkB and nah genes occurred in the studied soil samples. Various environmental variables regulated the spatial distribution of soil alkane and PAH metabolic genes, dependent on geographic location. The soil alkane-degrading bacterial communities in oil exploring areas mainly consisted of Pedobacter, Mycobacterium, and unknown alkB-harboring microorganisms. Moreover, the novel PAH-degraders predominated in nah gene clone libraries from soils of the two oil exploring areas. This work could provide some new insights towards the distribution of hydrocarbon-degrading microorganisms and their biodegradation potential in soil ecosystems.
Collapse
Affiliation(s)
- Yuyin Yang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control (Peking University), College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | | | | | | | | |
Collapse
|