1
|
Hnatko JP, Liu C, Elsey JL, Dong S, Fortner JD, Pennell KD, Abriola LM, Cápiro NL. Microbial Reductive Dechlorination by a Commercially Available Dechlorinating Consortium Is Not Inhibited by Perfluoroalkyl Acids (PFAAs) at Field-Relevant Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37216485 DOI: 10.1021/acs.est.2c04815] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Perfluoroalkyl acids (PFAAs) have been shown to inhibit biodegradation (i.e., organohalide respiration) of chlorinated ethenes. The potential negative impacts of PFAAs on microbial species performing organohalide respiration, particularly Dehalococcoides mccartyi (Dhc), and the efficacy of in situ bioremediation are a critical concern for comingled PFAA-chlorinated ethene plumes. Batch reactor (no soil) and microcosm (with soil) experiments, containing a PFAA mixture and bioaugmented with KB-1, were completed to assess the impact of PFAAs on chlorinated ethene organohalide respiration. In batch reactors, PFAAs delayed complete biodegradation of cis-1,2-dichloroethene (cis-DCE) to ethene. Maximum substrate utilization rates (a metric for quantifying biodegradation rates) were fit to batch reactor experiments using a numerical model that accounted for chlorinated ethene losses to septa. Fitted values for cis-DCE and vinyl chloride biodegradation were significantly lower (p < 0.05) in batch reactors containing ≥50 mg/L PFAAs. Examination of reductive dehalogenase genes implicated in ethene formation revealed a PFAA-associated change in the Dhc community from cells harboring the vcrA gene to those harboring the bvcA gene. Organohalide respiration of chlorinated ethenes was not impaired in microcosm experiments with PFAA concentrations of 38.7 mg/L and less, suggesting that a microbial community containing multiple strains of Dhc is unlikely to be inhibited by PFAAs at lower, environmentally relevant concentrations.
Collapse
Affiliation(s)
- Jason P Hnatko
- Environmental Resources Management (ERM), Boston, Massachusetts 02108, United States
| | - Chen Liu
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Jack L Elsey
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Sheng Dong
- Department of Civil and Environmental Engineering, Auburn University, Auburn, Alabama 36849, United States
| | - John D Fortner
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Linda M Abriola
- School of Engineering, Brown University, Providence, Rhode Island 02912, United States
| | - Natalie L Cápiro
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, United States
| |
Collapse
|
2
|
Li Y, Zhao HP, Zhu L. Iron Sulfide Enhanced the Dechlorination of Trichloroethene by Dehalococcoides mccartyi Strain 195. Front Microbiol 2021; 12:665281. [PMID: 34140942 PMCID: PMC8203822 DOI: 10.3389/fmicb.2021.665281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 04/06/2021] [Indexed: 12/04/2022] Open
Abstract
Iron sulfide (FeS) nanoparticles have great potential in environmental remediation. Using the representative species Dehalococcoides mccartyi strain 195 (Dhc 195), the effect of FeS on trichloroethene (TCE) dechlorination was studied with hydrogen and acetate as the electron donor and carbon source, respectively. With the addition of 0.2 mM Fe2+ and S2–, the dechlorination rate of TCE was enhanced from 25.46 ± 1.15 to 37.84 ± 1.89 μmol⋅L–1⋅day–1 by the in situ formed FeS nanoparticles, as revealed through X-ray diffraction. Comparing the tceA gene copy numbers between with FeS and without FeS, real-time polymerase chain reaction (PCR) indicated that the abundance of the tceA gene increased from (2.83 ± 0.13) × 107 to (4.27 ± 0.21) × 108 copies/ml on day 12. The transcriptional activity of key genes involved in the electron transport chain was upregulated after the addition of FeS, including those responsible for the iron–sulfur cluster assembly protein gene (DET1632) and transmembrane transport of iron (DET1503, DET0685), cobalamin (DET0685, DET1139), and molybdenum (DET1161) genes. Meanwhile, the reverse transcription of tceA was increased approximately five times on the 12th day. These upregulations together suggested that the electron transport of D. mccartyi strain 195 was enhanced by FeS for apparent TCE dechlorination. Overall, the present study provided an eco-friendly and effective method to achieve high remediation efficiency for organohalide-polluted groundwater and soil.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| | - He-Ping Zhao
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Lizhong Zhu
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Key Laboratory of Organic Pollution Process and Control, Zhejiang University, Hangzhou, China
| |
Collapse
|
3
|
Hnatko JP, Yang L, Pennell KD, Abriola LM, Cápiro NL. Bioenhanced back diffusion and population dynamics of Dehalococcoides mccartyi strains in heterogeneous porous media. CHEMOSPHERE 2020; 254:126842. [PMID: 32957273 DOI: 10.1016/j.chemosphere.2020.126842] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 04/16/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
Diffusion, sorption-desorption, and biodegradation influence chlorinated solvent storage in, and release (mass flux) from, low-permeability media. Although bioenhanced dissolution of non-aqueous phase liquids has been well-documented, less attention has been directed towards biologically-mediated enhanced diffusion from low-permeability media. This process was investigated using a heterogeneous aquifer cell, packed with 20-30 mesh Ottawa sand and lenses of varying permeability (1.0 × 10-12-1.2 × 10-11 m2) and organic carbon (OC) content (<0.1%-2%), underlain by trichloroethene (TCE)-saturated clay. Initial contaminant loading was attained by flushing with 0.5 mM TCE. Total chlorinated ethenes removal by hydraulic flushing was then compared for abiotic and bioaugmented systems (KB-1® SIREM; Guelph, ON). A numerical model incorporating coupled diffusion and (de)sorption facilitated quantification of bio-enhanced TCE release from low-permeability lenses, which ranged from 6% to 53%. Although Dehalococcoides mccartyi (Dhc) 16S rRNA genes were uniformly distributed throughout the porous media, strain-specific distribution, as indicated by the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA, was influenced by physical and chemical heterogeneity. Cells harboring the bvcA gene comprised 44% of the total RDase genes in the lower clay layer and media surrounding high OC lenses, but only 2% of RDase genes at other locations. Conversely, cells harboring the vcrA gene comprised 50% of RDase genes in low-permeability media compared with 85% at other locations. These results demonstrate the influence of microbial processes on back diffusion, which was most evident in regions with pronounced contrasts in permeability and OC content. Bioenhanced mass transfer and changes in the relative abundance of Dhc strains are likely to impact bioremediation performance in heterogeneous systems.
Collapse
Affiliation(s)
- Jason P Hnatko
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Lurong Yang
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Kurt D Pennell
- School of Engineering, Brown University, Providence, RI, USA
| | - Linda M Abriola
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA
| | - Natalie L Cápiro
- Department of Civil and Environmental Engineering, Tufts University, Medford, MA, USA; Department of Civil Engineering, Environmental Engineering Program, Auburn University, Auburn, AL, USA.
| |
Collapse
|
4
|
Li Y, Wen LL, Zhao HP, Zhu L. Addition of Shewanella oneidensis MR-1 to the Dehalococcoides-containing culture enhances the trichloroethene dechlorination. ENVIRONMENT INTERNATIONAL 2019; 133:105245. [PMID: 31683156 DOI: 10.1016/j.envint.2019.105245] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/28/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Dehalococcoides is able to completely dehalogenate tetrachloroethene (PCE) and trichloroethene (TCE) to ethene (ETH). However, the dechlorination efficiency of Dehalococcoides is low and result in the accumulation of toxic intermediates. In this study, Shewanella oneidensis MR-1 (S. oneidensis MR-1) was added to the Dehalococcoides-containing culture and the complete TCE to ETH dechlorination was shortened from 24 days to 16 days. Dehalococcoides-targeted 16S rRNA gene and two model reductive dehalogenase (RDase) genes (tceA and vcrA), responsible for dechlorinating TCE to vinyl chloride (VC) and VC to ETH respectively, were characterized. Results showed that S. oneidensis MR-1 has no effect on the cell growth while the RDase genes expression was up-regulated and the RDase activity of Dehalococcoides was elevated. The mRNA abundance of vcrA increased approximately tenfold along with the increased concentration of vitamin B12 (cyanocobalamin). Interestingly, the addition of S. oneidensis MR-1 increased the concentration of vitamin B12 by affecting the microbial community structure. Therefore, the addition of S. oneidensis MR-1 might have a positive effect on regulating the activity of RDase of functional microorganisms and uptake of vitamin B12, and further provided a practical vision of chloroethene dechlorination by the Dehalococcoides-containing culture.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Li-Lian Wen
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; College of Resource and Environmental Science, Hubei University, Wuhan 430062, China
| | - He-Ping Zhao
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Lizhong Zhu
- College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Organic Pollution Process and Control, Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|