1
|
Tang Y, Wang M, Venkatesan AK, Gobler CJ, Mao X. Biologically active filtration (BAF) for metabolic 1,4-dioxane removal from contaminated groundwater. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137827. [PMID: 40048785 DOI: 10.1016/j.jhazmat.2025.137827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 04/16/2025]
Abstract
1,4-Dioxane is a persistent contaminant that is not effectively removed by conventional water treatment processes. In this study, bench-scale granular activated carbon (GAC)-based biologically active filtration (BAF) systems were developed to metabolically degrade 1,4-dioxane at environmentally relevant levels (<1000 μg L-1). BAF was established using predeveloped biologically activated carbon particles by mixing a 1,4-dioxane-degrading microbial community with granular activated carbon. 1,4-Dioxane removal performance was examined at a range of 1,4-dioxane concentrations (100-1000 μg L-1), hydraulic loading rates (3.6-14 cm h-1), and with the presence of co-contaminants (natural organic matter (NOM) and 1,1-DCE). BAFs achieved 69 ± 7 % removal with an influent 1,4-dioxane concentration of 100 μg L-1 and hydraulic loading rates of 3.6-14 cm h-1, with the lowest effluent concentration of 21 μg L-1. The presence of NOM and 1,1-DCE negatively and irreversibly impacted 1,4-dioxane removal performance of BAF, and pretreatment processes to remove co-contaminants are crucial to maintain the 1,4-dioxane removal efficiency. Microbial analysis revealed the enrichment of 1,4-dioxane degrading species (CB1190-like bacteria) and functional genes responsible for 1,4-dioxane biodegradation (dxmB and aldh) at the top 12 cm of the columns, suggesting the effectiveness of biological 1,4-dioxane removal within short column lengths. This study demonstrated effective metabolic 1,4-dioxane removal at environmentally relevant concentrations by the BAFs, and can provide insights into designing better 1,4-dioxane remediation strategies.
Collapse
Affiliation(s)
- Yuyin Tang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Mian Wang
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Arjun K Venkatesan
- Department of Civil & Environmental Engineering, New Jersey Institute of Technology, Newark, NJ 07102, United States
| | - Christopher J Gobler
- New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States; School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794, United States
| | - Xinwei Mao
- Department of Civil Engineering, Stony Brook University, Stony Brook, NY 11794, United States; New York State Center for Clean Water Technology, Stony Brook University, Stony Brook, NY 11794, United States.
| |
Collapse
|
2
|
Gopalan J, Buthiyappan A, Rashidi NA, Sufian S, Abdul Raman AA. A sustainable and economical solution for CO 2 capture with biobased carbon materials derived from palm kernel shells. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:45887-45912. [PMID: 38980479 DOI: 10.1007/s11356-024-34173-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
This study investigates the synthesize of activated carbon for carbon dioxide adsorption using palm kernel shell (PKS), a by-product of oil palm industry. The adsorbent synthesis involved a simple two-step carbonization method. Firstly, PKS was activated with potassium oxide (KOH), followed by functionalization with magnesium oxide (MgO). Surface analysis revealed that KOH activated PKS has resulted in a high specific surface area of 1086 m2/g compared to untreated PKS (435 m2/g). However, impregnation of MgO resulted in the reduction of surface area due to blockage of pores by MgO. Thermogravimetric analysis (TGA) demonstrated that PKS-based adsorbents exhibited minimal weight loss of less than 30% up to 500 °C, indicating their suitability for high-temperature applications. CO2 adsorption experiments revealed that PKS-AC-MgO has achieved a higher adsorption capacity of 155.35 mg/g compared to PKS-AC (149.63 mg/g) at 25 °C and 5 bars. The adsorption behaviour of PKS-AC-MgO was well fitted by both the Sips and Langmuir isotherms, suggesting a combination of both heterogeneous and homogeneous adsorption and indicating a chemical reaction between MgO and CO2. Thermodynamic analysis indicated a spontaneous and thermodynamically favourable process for CO2 capture by PKS-AC-MgO, with negative change in enthalpy (- 0.21 kJ/mol), positive change in entropy (2.44 kJ/mol), and negative change in Gibbs free energy (- 729.61 J/mol, - 790.79 J/mol, and - 851.98 J/mol) across tested temperature. Economic assessment revealed that the cost of PKS-AC-MgO is 21% lower than the current market price of commercial activated carbon, indicating its potential for industrial application. Environmental assessment shows a significant reduction in greenhouse gas emissions (381.9 tCO2) through the utilization of PKS-AC-MgO, underscoring its environmental benefits. In summary, the use of activated carbon produced from PKS and functionalised with MgO shows great potential for absorbing CO2. This aligns with the ideas of a circular economy and sustainable development.
Collapse
Affiliation(s)
- Jayaprina Gopalan
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Archina Buthiyappan
- Department of Science and Technology Studies, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Nor Adilla Rashidi
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Suriati Sufian
- Biomass Processing Lab, Center of Biofuel and Biochemical, Chemical Engineering Department, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31750, Tronoh, Perak, Malaysia
| | - Abdul Aziz Abdul Raman
- Sustainable Process Engineering Centre (SPEC), Department of Chemical Engineering, Faculty of Engineering,, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| |
Collapse
|
3
|
Hwang JI, Wilson PC. Absorption, translocation, and metabolism of atrazine, carbamazepine, and sulfamethoxazole by the macrophyte Orange King Humbert canna lily (Canna × generalis L.H. Bailey (pro sp.) [glauca × indica]). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:46282-46294. [PMID: 36719575 DOI: 10.1007/s11356-023-25400-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Canna × generalis L.H. Bailey (pro sp.) [glauca × indica] (common name: Orange King Humbert canna lily) has been reported as a promising plant species that can effectively remove contaminants of emerging concern (CECs), such as atrazine (ATZ), carbamazepine (CBZ), and sulfamethoxazole (SMX), from contaminated surface water. In the present study, absorption, translocation, and metabolism of such CECs in canna were examined using carbon-14-labeled ([14C]) analogues of each contaminant to understand the removal of each. Uptake/adsorption of the [14C]-CECs increased over time and was > 47.5% at the end of the 14-day study. The root-shoot translocation of [14C]-ATZ in canna was the greatest at 49.9-78.8%, followed by [14C]-CBZ (1.9-44.7%) and [14C]-SMX (3.3-6.0%). The cumulative transpiration of canna was correlated with absorption (R2 > 0.95) and root-shoot translocation (R2 > 0.97) magnitudes of [14C]-CECs in canna. Radiographic results revealed significant conversion of parent [14C]-CECs into other metabolites during the 14-day study. Metabolism of [14C]-ATZ and [14C]-CBZ occurred mainly in the shoots, whereas metabolism of [14C]-SMX occurred in the roots. Taken together, root-shoot redistribution and metabolism of CECs absorbed into canna can vary by transpiration volume as well as chemical properties.
Collapse
Affiliation(s)
- Jeong-In Hwang
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
| | - P Chris Wilson
- Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
4
|
Pan Y, Guo Q, Hu S, Zheng X, Yin D, Zhou S, Hu N, Qiu F, Yun L, Yu H, Hao Y, Huang J. Photocatalytic Degradation Properties of Nano‐lignocellulose⋅NiNiO/GR‐TiO
2
Hollow Rod Composite for Methylene Blue. ChemistrySelect 2022. [DOI: 10.1002/slct.202202345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yanfei Pan
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
- Inner Mongolia Key Laboratory for Sand Shrubs Fibrosis and Energy Development and Utilization Inner Mongolia Agricultural University Hohhot China 010018
| | - Qiang Guo
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Shuaiqi Hu
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Xin Zheng
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Dingwen Yin
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Songran Zhou
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Nianguang Hu
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Fengqi Qiu
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Lei Yun
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Huan Yu
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
| | - Yinan Hao
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
- Inner Mongolia Key Laboratory for Sand Shrubs Fibrosis and Energy Development and Utilization Inner Mongolia Agricultural University Hohhot China 010018
| | - Jintian Huang
- College of Material Science and Art Design Inner Mongolia Agricultural University Hohhot China 010018
- Inner Mongolia Key Laboratory for Sand Shrubs Fibrosis and Energy Development and Utilization Inner Mongolia Agricultural University Hohhot China 010018
| |
Collapse
|
5
|
Jackson LE, Robertson WM, Rohrssen M, Chappaz A, Lemke LD. Evaluation of 1,4-dioxane attenuation processes at the Gelman Site, Michigan, USA. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153634. [PMID: 35149059 DOI: 10.1016/j.scitotenv.2022.153634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 06/14/2023]
Abstract
1,4-Dioxane released at the Gelman Site in Washtenaw County, Michigan, produced a series of contaminant plumes migrating up to 3 km through a heterogenous glacial aquifer system. An analysis of 1,4-dioxane concentrations in the Eastern Area of the Gelman Site between 2011 and 2017 documented a mass balance deficit of 2200 kg in excess of 2100 kg of 1,4-dioxane removed via remediation. Five mechanisms were evaluated to account for the mass deficiency: sorption, matrix diffusion, biodegradation, surface discharge, and bypass of the existing monitoring well network. The mass of 1,4-dioxane sorbed to aquifer and aquitard materials and the mass of 1,4-dioxane diffused into low permeability zones were estimated. However, decreasing aqueous concentrations across most of the contaminated area between 2011 and 2017 are expected to induce desorption and back diffusion during this period. Surface water discharge to a storm drain in the downgradient portion of the site was analyzed using concentration measurements and stream gage data. Results suggest that 1,4-dioxane mass entering the drain during the period between 2011 and 2017 was insufficient to account for the mass deficiency. Although available geochemical measurements indicate predominantly anaerobic aquifer conditions at the Gelman Site, biodegradation of 1,4-dioxane was estimated using first order decay rate constants from other sites where conditions may be more favorable. Results suggest that biodegradation could explain some but not all of the missing mass. Bypass of the downgradient monitoring well network is the most parsimonious explanation for the 1,4-dioxane mass deficit. This conclusion is supported by documented flow path complexity through the aquifer system and the sparse density of monitoring wells in the downgradient Eastern Area. These findings underscore the importance of characterizing aquifer heterogeneity when modeling and remediating persistent groundwater contaminants such as 1,4-dioxane.
Collapse
Affiliation(s)
- Leah E Jackson
- Oklahoma Geological Survey, Mewbourne College of Earth and Energy, The University of Oklahoma, Norman, OK 73019, USA; Earth and Ecosystem Science Program, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Wendy M Robertson
- Department of Earth and Atmospheric Sciences, Central Michigan University, 314 Brooks Hall, Mount Pleasant, MI 48859, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Megan Rohrssen
- Department of Earth and Atmospheric Sciences, Central Michigan University, 314 Brooks Hall, Mount Pleasant, MI 48859, USA
| | - Anthony Chappaz
- Department of Earth and Atmospheric Sciences, Central Michigan University, 314 Brooks Hall, Mount Pleasant, MI 48859, USA; STARLAB, Central Michigan University, Brooks Hall 314, Mount Pleasant, MI 48858, USA
| | - Lawrence D Lemke
- Department of Earth and Atmospheric Sciences, Central Michigan University, 314 Brooks Hall, Mount Pleasant, MI 48859, USA; Institute for Great Lakes Research, Central Michigan University, Mount Pleasant, MI 48859, USA
| |
Collapse
|
6
|
Adamson DT, Wilson JT, Freedman DL, Ramos-García AA, Lebrón C, Danko A. Establishing the prevalence and relative rates of 1,4-dioxane biodegradation in groundwater to improve remedy evaluations. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127736. [PMID: 34802822 DOI: 10.1016/j.jhazmat.2021.127736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
Options for remediating 1,4-dioxane at groundwater sites are limited due to the physical-chemical properties of this compound. The relevance of natural attenuation processes for 1,4-dioxane was investigated through data from field, lab, and modeling efforts. The objectives were to use multiple lines of evidence for 1,4-dioxane biodegradation to understand the prevalence of this activity and evaluate convergence between lines of evidence. A 14C-1,4-dioxane assay confirmed 1,4-dioxane biodegradation at 9 of 10 sites (median rate constant of 0.0105 yr-1 across wells). Site-wide rate constants were established using a calibrated fate and transport model at 8 sites (median = 0.075 yr-1). The 14C assay constants are likely more conservative, and variability in rates suggested that biodegradation at sites may be localized. Stable isotope fractionation was observed at 7 of 10 sites and served as another direct line of evidence of in situ biodegradation of 1,4-dioxane. This includes sites where indirect lines of evidence, including geochemical conditions or genetic biomarkers for degradation, would not necessarily have been supportive. This highlights the importance of collecting multiple lines of evidence to document 1,4-dioxane natural attenuation, and the widespread prevalence of biodegradation suggests that this process should be part of long-term management decisions.
Collapse
Affiliation(s)
| | - John T Wilson
- Scissortail Environmental Solutions LLC., Ada, OK, USA
| | | | | | | | - Anthony Danko
- Naval Facilities Engineering Systems Command - Engineering and Expeditionary Warfare Center, Port Hueneme, CA, USA
| |
Collapse
|
7
|
García ÁAR, Adamson DT, Wilson JT, Lebrón C, Danko AS, Freedman DL. Evaluation of natural attenuation of 1,4-dioxane in groundwater using a 14C assay. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127540. [PMID: 34763286 DOI: 10.1016/j.jhazmat.2021.127540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/06/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Monitored Natural Attenuation (MNA) is a preferred remedy for sites contaminated with 1,4-dioxane due to its low cost and limited environmental impacts compared to active remediation. Having a robust estimate of the rate at which biodegradation occurs is an essential component of assessing MNA. In this study, an assay was developed using 14C-labeled 1,4-dioxane to measure rate constants for biodegradation based on accumulation of 14C products. Purification of the 14C-1,4-dioxane stock solution lowered the level of 14C impurities to below 1% of the total 14C activity. This enabled determination of rate constants in groundwater as low as 0.0021 yr-1, equating to a half-life greater than 300 years. Of the 54 groundwater samples collected from 10 sites in the US, statistically significant rate constants were determined with the 14C assay for 24. The median rate constant was 0.0138 yr-1 (half-life = 50 yr); the maximum rate constant was 0.367 yr-1 (half-life = 1.9 yr). The results confirmed that biodegradation of 1,4-dioxane is occurring at 9 of the 10 sites sampled, albeit with considerable variability in the level of activity. The specificity of the assay was confirmed using acetylene and the absence of oxygen to inhibit monooxygenases.
Collapse
Affiliation(s)
- Ángel A Ramos García
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA
| | | | - John T Wilson
- Scissortail Environmental Solutions LLC., Ada, OK, USA
| | | | - Anthony S Danko
- Naval Facilities Engineering Systems Command - Engineering and Expeditionary Warfare Center, Port Hueneme, CA, USA
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC 29634, USA.
| |
Collapse
|
8
|
Miao Y, Johnson NW, Phan T, Heck K, Gedalanga PB, Zheng X, Adamson D, Newell C, Wong MS, Mahendra S. Monitoring, assessment, and prediction of microbial shifts in coupled catalysis and biodegradation of 1,4-dioxane and co-contaminants. WATER RESEARCH 2020; 173:115540. [PMID: 32018172 DOI: 10.1016/j.watres.2020.115540] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/24/2019] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
Microbial community dynamics were characterized following combined catalysis and biodegradation treatment trains for mixtures of 1,4-dioxane and chlorinated volatile organic compounds (CVOCs) in laboratory microcosms. Although a few specific bacterial taxa are capable of removing 1,4-dioxane and individual CVOCs, many microorganisms are inhibited when these contaminants are present in mixtures. Chemical catalysis by tungstated zirconia (WOx/ZrO2) and hydrogen peroxide (H2O2) as a non-selective treatment was designed to achieve nearly 20% 1,4-dioxane and over 60% trichloroethene and 50% dichloroethene removals. Post-catalysis, bioaugmentation with 1,4-dioxane metabolizing bacterial strain,Pseudonocardia dioxanivorans CB1190, removed the remaining 1,4-dioxane. The evolution of the microbial community under different conditions was time-dependent but relatively independent of the concentrations of contaminants. The compositions of microbiomes tended to be similar regardless of complex contaminant mixtures during the biodegradation phase, indicating a r-K strategy transition attributed to the shock experienced during catalysis and the subsequent incubation. The originally dominant genera Pseudomonas and Ralstonia were sensitive to catalytic oxidation, and were overwhelmed by Sphingomonas, Rhodococcus, and other catalyst-tolerant microbes, but microbes capable of biodegradation of organics thrived during the incubation. Methane metabolism, chloroalkane-, and chloroalkene degradation pathways appeared to be responsible for CVOC degradation, based on the identifications of haloacetate dehalogenases, 2-haloacid dehalogenases, and cytochrome P450 family. Network analysis highlighted the potential interspecies competition or commensalism, and dynamics of microbiomes during the biodegradation phase that were in line with shifting predominant genera, confirming the deterministic processes guiding the microbial assembly. Collectively, this study demonstrated that catalysis followed by bioaugmentation is an effective treatment for 1,4-dioxane in the presence of high CVOC concentrations, and it enhanced our understanding of microbial ecological impacts resulting from abiotic-biological treatment trains. These results will be valuable for predicting treatment synergies that lead to cost savings and improve remedial outcomes in short-term active remediation as well as long-term changes to the environmental microbial communities.
Collapse
Affiliation(s)
- Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Thien Phan
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Kimberly Heck
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States; Department of Public Health, California State University, Fullerton, CA, 92834, United States
| | - Xiaoru Zheng
- Department of Statistics, University of California, Los Angeles, CA, 90095, United States
| | - David Adamson
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Charles Newell
- GSI Environmental Inc., Houston, TX, 77098, United States
| | - Michael S Wong
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, 77005, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States.
| |
Collapse
|
9
|
Li F, Deng D, Li M. Distinct Catalytic Behaviors between Two 1,4-Dioxane-Degrading Monooxygenases: Kinetics, Inhibition, and Substrate Range. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1898-1908. [PMID: 31877031 DOI: 10.1021/acs.est.9b05671] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monitored natural attenuation (MNA) and engineered bioremediation have been recognized as effective and cost-efficient in situ treatments to mitigate 1,4-dioxane (dioxane) contamination. Dioxane metabolism can be initiated by two catabolic enzymes, propane monooxygenase (PRM) and tetrahydrofuran monooxygenase (THM), belonging to the group-6 and 5 of soluble di-iron monooxygenase family, respectively. In this study, we comprehensively compared catalytic behaviors of PRM and THM when individually expressed in the heterologous host, Mycobacterium smegmatis mc2-155. Kinetic results revealed a half-saturation coefficient (Km) of 53.0 ± 13.1 mg/L for PRM, nearly 4 times lower than that of THM (235.8 ± 61.6 mg/L), suggesting that PRM has a higher affinity to dioxane. Exposure with three common co-contaminants (1,1-dichloroethene, trichloroethene, and 1,1,1-trichloroethane) demonstrated that PRM was also more resistant to their inhibition than THM. Thus, dioxane degraders expressing PRM may be more physiologically and ecologically advantageous than those with THM at impacted sites, where dioxane concentration is relatively low (e.g., 250 to 1000 μg/L) with co-occurrence of chlorinated solvents (e.g., 0.5 to 8 mg/L), underscoring the need of surveying both PRM and THM-encoding genes for MNA potential assessment. PRM is also highly versatile, which breaks down cyclic molecules (dioxane, tetrahydrofuran, and cyclohexane), as well as chlorinated and aromatic pollutants, including vinyl chloride, 1,2-dichloroethane, benzene, and toluene. This is the first report regarding the ability of PRM to degrade a variety of short-chain alkanes and ethene in addition to dioxane, unraveling its pivotal role in aerobic biostimulation that utilizes propane, isobutane, or other gaseous alkanes/alkenes (e.g., ethane, butane, and ethene) to select and fuel indigenous microorganisms to tackle the commingled contamination of dioxane and chlorinated compounds.
Collapse
Affiliation(s)
- Fei Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Daiyong Deng
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science , New Jersey Institute of Technology , Newark , New Jersey 07102 , United States
| |
Collapse
|
10
|
Zhao L, Lu X, Polasko A, Johnson NW, Miao Y, Yang Z, Mahendra S, Gu B. Co-contaminant effects on 1,4-dioxane biodegradation in packed soil column flow-through systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 243:573-581. [PMID: 30216889 DOI: 10.1016/j.envpol.2018.09.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/10/2018] [Accepted: 09/03/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of 1,4-dioxane was examined in packed quartz and soil column flow-through systems. The inhibitory effects of co-contaminants, specifically trichloroethene (TCE), 1,1-dichloroethene (1,1-DCE), and copper (Cu2+) ions, were investigated in the columns either with or without bioaugmentation with a 1,4-dioxane degrading bacterium Pseudonocardia dioxanivorans CB1190. Results indicate that CB1190 cells readily grew and colonized in the columns, leading to significant degradation of 1,4-dioxane under oxic conditions. Degradation of 1,4-dioxane was also observed in the native soil (without bioaugmentation), which had been previously subjected to enhanced reductive dechlorination treatment for co-contaminants TCE and 1,1-DCE. Bioaugmentation of the soil with CB1190 resulted in nearly complete degradation at influent concentrations of 3-10 mg L-1 1,4-dioxane and a residence reaction time of 40-80 h, but the presence of co-contaminants, 1,1-DCE and Cu2+ ions (up to 10 mg L-1), partially inhibited 1,4-dioxane degradation in the untreated and bioaugmented soil columns. However, the inhibitory effects were much less severe in the column flow-through systems than those previously observed in planktonic cultures, which showed near complete inhibition at the same co-contaminant concentrations. These observations demonstrate a low susceptibility of soil microbes to the toxicity of 1,1-DCE and Cu2+ in packed soil flow-through systems, and thus have important implications for predicting biodegradation potential and developing sustainable, cost-effective technologies for in situ remediation of 1,4-dioxane contaminated soils and groundwater.
Collapse
Affiliation(s)
- Linduo Zhao
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Xia Lu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States
| | - Alexandra Polasko
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Nicholas W Johnson
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Yu Miao
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Ziming Yang
- Department of Chemistry, Oakland University, Rochester, MI 48309, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, United States
| | - Baohua Gu
- Environmental Science Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, United States; Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, 37996, United States.
| |
Collapse
|
11
|
Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME JOURNAL 2018; 12:2376-2388. [PMID: 29899516 PMCID: PMC6155002 DOI: 10.1038/s41396-018-0201-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022]
Abstract
1,4-Dioxane is one of the most common and persistent artificial pollutants in petrochemical industrial wastewaters and chlorinated solvent groundwater plumes. Despite its possible biological treatment in natural environments, the identity and dynamics of the microorganisms involved are largely unknown. Here, we identified active and diverse 1,4-dioxane-degrading microorganisms from activated sludge by high-sensitivity stable isotope probing of rRNA. By rigorously analyzing 16S rRNA molecules in RNA density fractions of 13C-labeled and unlabeled 1,4-dioxane treatments, we discovered 10 significantly 13C-incorporating microbial species from the complex microbial community. 16S rRNA expression assays revealed that 9 of the 10 species, including the well-known degrader Pseudonocardia dioxanivorans, an ammonia-oxidizing bacterium and phylogenetically novel bacteria, increased their metabolic activities shortly after exposure to 1,4-dioxane. Moreover, high-resolution monitoring showed that, during a single year of operation of the full-scale activated sludge system, the nine identified species exhibited yearly averaged relative abundances of 0.001–1.523%, and yet showed different responses to changes in the 1,4-dioxane removal efficiency. Hence, the co-existence and individually distinct dynamics of various 1,4-dioxane-degrading microorganisms, including hitherto unidentified species, played pivotal roles in the maintenance of the biological system removing the recalcitrant pollutant.
Collapse
|
12
|
Barajas-Rodriguez FJ, Freedman DL. Aerobic biodegradation kinetics for 1,4-dioxane under metabolic and cometabolic conditions. JOURNAL OF HAZARDOUS MATERIALS 2018; 350:180-188. [PMID: 29477886 DOI: 10.1016/j.jhazmat.2018.02.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 01/22/2018] [Accepted: 02/15/2018] [Indexed: 06/08/2023]
Abstract
Biodegradation of 1,4-dioxane has been studied extensively, however, there is insufficient information on the kinetic characteristics of cometabolism by propanotrophs and a lack of systematic comparisons to metabolic biodegradation. To fill in these gaps, experiments were performed with suspended growth cultures to determine 16 Monod kinetic coefficients that describe metabolic consumption of 1,4-dioxane by Pseudonocardia dioxanivorans CB1190 and cometabolism by the propanotrophic mixed culture ENV487 and the propanotroph Rhodococcus ruber ENV425. Maximum specific growth rates were highest for ENV425, followed by ENV487 and CB1190. Half saturation constants for 1,4-dioxane for the propanotrophs were one-half to one-quarter those for CB1190. Propane was preferentially degraded over 1,4-dioxane, but the reverse did not occur. A kinetic model was used to simulate batch biodegradation of 1,4-dioxane. Propanotrophs decreased 1,4-dioxane from 1000 to 1 μg/L in less time than CB1190 when the initial biomass concentration was 0.74 mg COD/L; metabolic biodegradation was favored at higher initial biomass concentrations and higher initial 1,4-dioxane concentrations. 1,4-Dioxane biodegradation was inhibited when oxygen was below 1.5 mg/L. The kinetic model provides a framework for comparing in situ biodegradation of 1,4-dioxane via bioaugmentation with cultures that use the contaminant as a growth substrate to those that achieve biodegradation via cometabolism.
Collapse
Affiliation(s)
| | - David L Freedman
- Department of Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
13
|
da Silva MLB, Woroszylo C, Castillo NF, Adamson DT, Alvarez PJJ. Associating potential 1,4-dioxane biodegradation activity with groundwater geochemical parameters at four different contaminated sites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:60-64. [PMID: 29059571 DOI: 10.1016/j.jenvman.2017.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/09/2017] [Accepted: 10/12/2017] [Indexed: 06/07/2023]
Abstract
1,4-Dioxane (dioxane) is a groundwater contaminant of emerging concern for which bioremediation may become a practical remediation strategy. Therefore, it is important to advance our heuristic understanding of geochemical parameters that are most influential on the potential success of intrinsic bioremediation of dioxane-impacted sites. Here, Pearson's and Spearman's correlation and linear regression analyses were conducted to discern associations between 1,4-dioxane biodegradation activity measured in aerobic microcosms and groundwater geochemical parameters at four different contaminated sites. Dissolved oxygen, which is known to limit dioxane biodegradation, was excluded as a limiting factor in this analysis. Biodegradation activity was positively associated with dioxane concentrations (p < 0.01; R < 0.70) as well as the number of catabolic thmA gene copies (p < 0.01; R = 0.80) encoding dioxane monooxygenase. Thus, whereas environmental factors such as pH, temperature, and nutrients may influence dioxane biodegradation, these parameters did not exert as strong of an influence on potential biodegradation activity as the in situ concentration of substrate dioxane at the time of sampling. This analysis infers that aerobic sites with higher dioxane concentrations are more likely to select and sustain a thriving population of dioxane degraders, while sites with relatively low dioxane concentrations would be more difficult to attenuate naturally and may require alternative remediation strategies.
Collapse
Affiliation(s)
- Márcio Luís Busi da Silva
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States.
| | | | | | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX 77005, United States
| |
Collapse
|
14
|
Jasmann JR, Gedalanga PB, Borch T, Mahendra S, Blotevogel J. Synergistic Treatment of Mixed 1,4-Dioxane and Chlorinated Solvent Contaminations by Coupling Electrochemical Oxidation with Aerobic Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12619-12629. [PMID: 29023103 DOI: 10.1021/acs.est.7b03134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Biodegradation of the persistent groundwater contaminant 1,4-dioxane is often hindered by the absence of dissolved oxygen and the co-occurrence of inhibiting chlorinated solvents. Using flow-through electrolytic reactors equipped with Ti/IrO2-Ta2O5 mesh electrodes, we show that combining electrochemical oxidation with aerobic biodegradation produces an overadditive treatment effect for degrading 1,4-dioxane. In reactors bioaugmented by Pseudonocardia dioxanivorans CB1190 with 3.0 V applied, 1,4-dioxane was oxidized 2.5 times faster than in bioaugmented control reactors without an applied potential, and 12 times faster than by abiotic electrolysis only. Quantitative polymerase chain reaction analyses of CB1190 abundance, oxidation-reduction potential, and dissolved oxygen measurements indicated that microbial growth was promoted by anodic oxygen-generating reactions. At a higher potential of 8.0 V, however, the cell abundance near the anode was diminished, likely due to unfavorable pH and/or redox conditions. When coupled to electrolysis, biodegradation of 1,4-dioxane was sustained even in the presence of the common co-contaminant trichloroethene in the influent. Our findings demonstrate that combining electrolytic treatment with aerobic biodegradation may be a promising synergistic approach for the treatment of mixed contaminants.
Collapse
Affiliation(s)
- Jeramy R Jasmann
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Thomas Borch
- Department of Chemistry, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
- Department of Soil and Crop Sciences, Colorado State University , Fort Collins, Colorado 80523, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Jens Blotevogel
- Department of Civil and Environmental Engineering, Colorado State University , Fort Collins, Colorado 80523, United States
| |
Collapse
|
15
|
Adamson DT, Piña EA, Cartwright AE, Rauch SR, Hunter Anderson R, Mohr T, Connor JA. 1,4-Dioxane drinking water occurrence data from the third unregulated contaminant monitoring rule. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 596-597:236-245. [PMID: 28433766 DOI: 10.1016/j.scitotenv.2017.04.085] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/23/2017] [Accepted: 04/11/2017] [Indexed: 06/07/2023]
Abstract
This study examined data collected from U.S. public drinking water supplies in support of the recently-completed third round of the Unregulated Contaminant Monitoring Rule (UCMR3) to better understand the nature and occurrence of 1,4-dioxane and the basis for establishing drinking water standards. The purpose was to evaluate whether the occurrence data for this emerging but federally-unregulated contaminant fit with common conceptual models, including its persistence and the importance of groundwater contamination for potential exposure. 1,4-Dioxane was detected in samples from 21% of 4864 PWSs, and was in exceedance of the health-based reference concentration (0.35μg/L) at 6.9% of these systems. In both measures, it ranked second among the 28 UCMR3 contaminants. Although much of the focus on 1,4-dioxane has been its role as a groundwater contaminant, the detection frequency for 1,4-dioxane in surface water was only marginally lower than in groundwater (by a factor of 1.25; p<0.0001). However, groundwater concentrations were higher than those in surface water (p<0.0001) and contributed to a higher frequency of exceeding the reference concentration (by a factor of 1.8, p<0.0001), indicating that surface water sources tend to be more dilute. Sampling from large systems increased the likelihood that 1,4-dioxane was detected by a factor of 2.18 times relative to small systems (p<0.0001). 1,4-Dioxane detections in drinking water were highly associated with detections of other chlorinated compounds particularly 1,1-dichlorethane (odds ratio=47; p<0.0001), which is associated with the release of 1,4-dioxane as a chlorinated solvent stabilizer. Based on aggregated nationwide data, 1,4-dioxane showed evidence of a decreasing trend in concentration and detection frequency over time. These data suggest that the loading to drinking water supplies may be decreasing. However, in the interim, some water supply systems may need to consider improving their treatment capabilities in response to further regulatory review of this compound.
Collapse
Affiliation(s)
| | | | | | | | | | - Thomas Mohr
- Santa Clara Valley Water District, 5750 Almaden Expressway, San Jose, CA 95118, USA
| | | |
Collapse
|
16
|
Li M, Liu Y, He Y, Mathieu J, Hatton J, DiGuiseppi W, Alvarez PJJ. Hindrance of 1,4-dioxane biodegradation in microcosms biostimulated with inducing or non-inducing auxiliary substrates. WATER RESEARCH 2017; 112:217-225. [PMID: 28161562 DOI: 10.1016/j.watres.2017.01.047] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 06/06/2023]
Abstract
A microcosm study was conducted to assess two biostimulation strategies (relative to natural attenuation) to bioremediate 1,4-dioxane contamination at a site in west Texas. Dioxane concentrations were relatively low (<300 μg/L), which represents a potential challenge to sustain and induce specific degraders. Thus, biostimulation was attempted with an auxiliary substrate known to induce dioxane-degrading monooxygenases (i.e., tetrahydrohyran [THF]) or with a non-inducing growth substrate (1-butanol [1-BuOH]). Amendment of 1-BuOH (100 mg/L) to microcosms that were not oxygen-limited temporarily enhanced dioxane biodegradation by the indigenous microorganisms. However, this stimulatory effect was not sustained by repeated amendments, which might be attributed to i) the inability of 1-BuOH to induce dioxane-degrading enzymes, ii) curing of catabolic plasmids, iii) metabolic flux dilution and catabolite repression, and iv) increased competition by commensal bacteria that do not degrade dioxane. Experiments with the archetype dioxane degrader Pseudonocardia dioxanivorans CB1190 repeatedly amended with 1-BuOH (500 mg/L added weekly for 4 weeks) corroborated the partial curing of catabolic plasmids (9.5 ± 7.4% was the plasmid retention ratio) and proliferation of derivative segregants that lost their ability to degrade dioxane. Addition of THF (300 μg/L) also had limited benefit due to competitive inhibition; significant dioxane degradation occurred only when the THF concentration decreased below approximately 160 μg/L. Overall, these results illustrate the importance of considering the possibility of unintentional hindrance of catabolism associated with the addition of auxiliary carbon sources to bioremediate aquifers impacted with trace concentrations of dioxane.
Collapse
Affiliation(s)
- Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, USA; Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, Hunan, China
| | - Ya He
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Jacques Mathieu
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | | | | | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| |
Collapse
|
17
|
Favara P, Tunks J, Hatton J, DiGuiseppi W. Sustainable Remediation Considerations for Treatment of 1,4-Dioxane in Groundwater. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21501] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | - John Tunks
- Environment and Nuclear Business Group, CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| | - Jim Hatton
- CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| | | |
Collapse
|
18
|
Gedalanga P, Madison A, Miao Y(R, Richards T, Hatton J, DiGuiseppi WH, Wilson J, Mahendra S. A Multiple Lines of Evidence Framework to Evaluate Intrinsic Biodegradation of 1,4‐Dioxane. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21499] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Phillip Gedalanga
- Department of Civil and Environmental Engineering, University of California, Los Angeles, California
| | | | | | | | - James Hatton
- CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| | | | | | | |
Collapse
|
19
|
DiGuiseppi W, Walecka-Hutchison C, Hatton J. 1,4-Dioxane Treatment Technologies. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/rem.21498] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Jim Hatton
- CH2M's Site Remediation and Restoration Group, Englewood, Colorado
| |
Collapse
|
20
|
Inoue D, Tsunoda T, Sawada K, Yamamoto N, Saito Y, Sei K, Ike M. 1,4-Dioxane degradation potential of members of the genera Pseudonocardia and Rhodococcus. Biodegradation 2016; 27:277-286. [PMID: 27623820 DOI: 10.1007/s10532-016-9772-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 09/07/2016] [Indexed: 11/30/2022]
Abstract
In recent years, several strains capable of degrading 1,4-dioxane have been isolated from the genera Pseudonocardia and Rhodococcus. This study was conducted to evaluate the 1,4-dioxane degradation potential of phylogenetically diverse strains in these genera. The abilities to degrade 1,4-dioxane as a sole carbon and energy source and co-metabolically with tetrahydrofuran (THF) were evaluated for 13 Pseudonocardia and 12 Rhodococcus species. Pseudonocardia dioxanivorans JCM 13855T, which is a 1,4-dioxane degrading bacterium also known as P. dioxanivorans CB1190, and Rhodococcus aetherivorans JCM 14343T could degrade 1,4-dioxane as the sole carbon and energy source. In addition to these two strains, ten Pseudonocardia strains could degrade THF, but no Rhodococcus strains could degrade THF. Of the ten Pseudonocardia strains, Pseudonocardia acacia JCM 16707T and Pseudonocardia asaccharolytica JCM 10410T degraded 1,4-dioxane co-metabolically with THF. These results indicated that 1,4-dioxane degradation potential, including degradation for growth and by co-metabolism with THF, is possessed by selected strains of Pseudonocardia and Rhodococcus, although THF degradation potential appeared to be widely distributed in Pseudonocardia. Analysis of soluble di-iron monooxygenase (SDIMO) α-subunit genes in THF and/or 1,4-dioxane degrading strains revealed that not only THF and 1,4-dioxane monooxygenases but also propane monooxygenase-like SDIMOs can be involved in 1,4-dioxane degradation.
Collapse
Affiliation(s)
- Daisuke Inoue
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan. .,Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan.,Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yuji Saito
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Kazunari Sei
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan.,Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
21
|
Zhang S, Gedalanga PB, Mahendra S. Biodegradation Kinetics of 1,4-Dioxane in Chlorinated Solvent Mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:9599-9607. [PMID: 27486928 DOI: 10.1021/acs.est.6b02797] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This study investigated the impacts of individual chlorinated solvents and their mixtures on aerobic 1,4-dioxane biodegradation by Pseudonocardia dioxanivorans CB1190. The established association of these co-occurring compounds suggests important considerations for their respective biodegradation processes. Our kinetics and mechanistic studies demonstrated that individual solvents inhibited biodegradation of 1,4-dioxane in the following order: 1,1-dichloroethene (1,1-DCE) > cis-1,2-diochloroethene (cDCE) > trichloroethene (TCE) > 1,1,1-trichloroethane (TCA). The presence of 5 mg L(-1) 1,1-DCE completely inhibited 1,4-dioxane biodegradation. Subsequently, we determined that 1,1-DCE was the strongest inhibitor of 1,4-dioxane biodegradation by bacterial pure cultures exposed to chlorinated solvent mixtures as well as in environmental samples collected from a site contaminated with chlorinated solvents and 1,4-dioxane. Inhibition of 1,4-dioxane biodegradation rates by chlorinated solvents was attributed to delayed ATP production and down-regulation of both 1,4-dioxane monooxygenase (dxmB) and aldehyde dehydrogenase (aldH) genes. Moreover, increasing concentrations of 1,1-DCE and cis-1,2-DCE to 50 mg L(-1) respectively increased 5.0-fold and 3.5-fold the expression of the uspA gene encoding a universal stress protein. In situ natural attenuation or enhanced biodegradation of 1,4-dioxane is being considered for contaminated groundwater and industrial wastewater, so these results will have implications for selecting 1,4-dioxane bioremediation strategies at sites where chlorinated solvents are present as co-contaminants.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Phillip B Gedalanga
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| | - Shaily Mahendra
- Department of Civil and Environmental Engineering, University of California , Los Angeles, California 90095, United States
| |
Collapse
|
22
|
Adamson DT, Anderson RH, Mahendra S, Newell CJ. Evidence of 1,4-dioxane attenuation at groundwater sites contaminated with chlorinated solvents and 1,4-dioxane. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6510-6518. [PMID: 25970261 DOI: 10.1021/acs.est.5b00964] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
There is a critical need to develop appropriate management strategies for 1,4-dioxane (dioxane) due to its widespread occurrence and perceived recalcitrance at groundwater sites where chlorinated solvents are present. A comprehensive evaluation of California state (GeoTracker) and Air Force monitoring records was used to provide significant evidence of dioxane attenuation at field sites. Temporal changes in the site-wide maximum concentrations were used to estimate source attenuation rates at the GeoTracker sites (median length of monitoring period = 6.8 years). While attenuation could not be established at all sites, statistically significant positive attenuation rates were confirmed at 22 sites. At sites where dioxane and chlorinated solvents were present, the median value of all statistically significant dioxane source attenuation rates (equivalent half-life = 31 months; n = 34) was lower than 1,1,1-trichloroethane (TCA) but similar to 1,1-dichloroethene (1,1-DCE) and trichloroethene (TCE). Dioxane attenuation rates were positively correlated with rates for 1,1-DCE and TCE but not TCA. At this set of sites, there was little evidence that chlorinated solvent remedial efforts (e.g., chemical oxidation, enhanced bioremediation) impacted dioxane attenuation. Attenuation rates based on well-specific records from the Air Force data set confirmed significant dioxane attenuation (131 out of 441 wells) at a similar frequency and extent (median equivalent half-life = 48 months) as observed at the California sites. Linear discriminant analysis established a positive correlation between dioxane attenuation and increasing concentrations of dissolved oxygen, while the same analysis found a negative correlation with metals and CVOC concentrations. The magnitude and prevalence of dioxane attenuation documented here suggest that natural attenuation may be used to manage some but not necessarily all dioxane-impacted sites.
Collapse
Affiliation(s)
- David T Adamson
- †GSI Environmental Inc., Houston, Texas 77098, United States
| | - R Hunter Anderson
- ‡Air Force Civil Engineer Center, Lackland Air Force Base, San Antonio, Texas 78236 United States
| | - Shaily Mahendra
- §Department of Civil and Environmental Engineering, University of California, Los Angeles, California 90095, United States
| | | |
Collapse
|