1
|
Lorah MM, Vogler E, Gebhardt FE, Graves D, Grabowski JF. Enhanced bioremediation of RDX and Co-Contaminants perchlorate and nitrate using an anaerobic dehalogenating consortium in a fractured rock aquifer. CHEMOSPHERE 2022; 294:133674. [PMID: 35065174 DOI: 10.1016/j.chemosphere.2022.133674] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 06/14/2023]
Abstract
The potential neurotoxic and carcinogenic effects of the explosives compound RDX (hexahydro-1,3,5-trinitro-1,3,5-triazine) on human health requires groundwater remediation strategies to meet low cleanup goals. Bioremediation of RDX is feasible through biostimulation of native microbes with an organic carbon donor but may be less efficient, or not occur at all, in the presence of the common co-contaminants perchlorate and nitrate. Laboratory tests compared biostimulation with bioaugmentation to achieve anaerobic degradation of RDX, perchlorate, and nitrate; a field pilot test was then conducted in a fractured rock aquifer with the selected bioaugmentation approach. Insignificant reduction of RDX, perchlorate, or nitrate was observed by the native microbes in microcosms, with or without biostimulation by addition of lactate. Tests of the RDX-degrading ability of the microbial consortium WBC-2, originally developed for dehalogenation of chlorinated volatile organic compounds, showed first-order biodegradation rate constants ranging from 0.57 to 0.90 per day (half-lives 1.2 to 0.80 days). WBC-2 sustained degradation without daughter product accumulation when repeatedly amended with RDX and lactate for a year. In microcosms with groundwater containing perchlorate and nitrate, RDX degradation began without delay when bioaugmented with 10% WBC-2. Slower RDX degradation occurred with 3% or 5% WBC-2 amendment, indicating a direct relation with cell density. Transient RDX daughter compounds included methylene dinitramine, MNX, and DNX. With WBC-2 amendment, nitrate concentrations immediately decreased to near or below detection, and perchlorate degradation occurred with half-lives of 25-34 days. Single-well injection tests with WBC-2 and lactate showed that the onset of RDX degradation coincided with the onset of sulfide production, which was affected by the initial perchlorate concentration. Biodegradation rates in the pilot injection tests agreed well with those measured in the microcosms. These results support bioaugmentation with an anaerobic culture as a remedial strategy for sites contaminated with RDX, nitrate, and perchlorate.
Collapse
Affiliation(s)
| | - Eric Vogler
- U.S. Geological Survey, Albuquerque, NM, USA.
| | | | | | | |
Collapse
|
2
|
Khan MI, Yoo K, Kim S, Cheema SA, Bashir S, Park J. A Sporolactobacillus-, Clostridium-, and Paenibacillus- Dominant Microbial Consortium Improved Anaerobic RDX Detoxification by Starch Addition. J Microbiol Biotechnol 2020; 30:839-847. [PMID: 32160699 PMCID: PMC9728379 DOI: 10.4014/jmb.1910.10034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 03/05/2020] [Indexed: 12/15/2022]
Abstract
In the present study, an anaerobic microbial consortium for the degradation of hexahydro-1,3,5- trinitro-1,3,5-triazine (RDX) was selectively enriched with the co-addition of RDX and starch under nitrogen-deficient conditions. Microbial growth and anaerobic RDX biodegradation were effectively enhanced by the co-addition of RDX and starch, which resulted in increased RDX biotransformation to nitroso derivatives at a greater specific degradation rate than those for previously reported anaerobic RDX-degrading bacteria (isolates). The accumulation of the most toxic RDX degradation intermediate (MNX [hexahydro-1-nitroso-3,5-dinitro-1,3,5-triazine]) was significantly reduced by starch addition, suggesting improved RDX detoxification by the co-addition of RDX and starch. The subsequent MiSeq sequencing that targeted the bacterial 16S rRNA gene revealed that the Sporolactobacillus, Clostridium, and Paenibacillus populations were involved in the enhanced anaerobic RDX degradation. These results suggest that these three bacterial populations are important for anaerobic RDX degradation and detoxification. The findings from this work imply that the Sporolactobacillus, Clostridium, and Paenibacillus dominant microbial consortium may be valuable for the development of bioremediation resources for RDX-contaminated environments.
Collapse
Affiliation(s)
- Muhammad Imran Khan
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan,Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research- UFZ, 0318 Leipzig, Germany
| | - Keunje Yoo
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Department of Environmental Engineering, College of Engineering, Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Seonghoon Kim
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sardar Alam Cheema
- Department of Agronomy, University of Agriculture, Faisalabad 8040, Pakistan
| | - Safdar Bashir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad 38040, Pakistan
| | - Joonhong Park
- Department of Civil and Environmental Engineering, College of Engineering, Yonsei University, Seoul 03722, Republic of Korea,Corresponding author Phone: +82-2-2123-7768 Fax: +82-2-312-5798 E-mail:
| |
Collapse
|
3
|
Michalsen MM, King AS, Istok JD, Crocker FH, Fuller ME, Kucharzyk KH, Gander MJ. Spatially-distinct redox conditions and degradation rates following field-scale bioaugmentation for RDX-contaminated groundwater remediation. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121529. [PMID: 31911385 DOI: 10.1016/j.jhazmat.2019.121529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/10/2019] [Accepted: 10/22/2019] [Indexed: 06/10/2023]
Abstract
In situ bioaugmentation for cleanup of an hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX)-contaminated groundwater plume was recently demonstrated. Results of a forced-gradient, field-scale cell transport test with Gordonia sp. KTR9 and Pseudomonas fluorescens strain I-C cells (henceforth "KTR9" and "Strain I-C") showed these strains were transported 13 m downgradient over 1 month. Abundances of xplA and xenB genes, respective indicators of KTR9 and Strain I-C, approached injection well cell densities at 6 m downgradient, whereas gene abundances (and conservative tracer) had begun to increase at 13 m downgradient at test conclusion. In situ push-pull tests were subsequently completed to measure RDX degradation rates in the bioaugmented wells under ambient gradient conditions. Time-series monitoring of RDX, RDX end-products, conservative tracer, xplA and xenB gene copy numbers and XplA and XenB protein abundance were used to assess the efficacy of bioaugmentation and to estimate the apparent first-order RDX degradation rates during each test. A collective evaluation of redox conditions, RDX end-products, varied RDX degradation kinetics, and biomarkers indicated that Strain I-C and KTR9 rapidly degraded RDX. Results showed bioaugmentation is a viable technology for accelerating RDX cleanup in the demonstration site aquifer and may be applicable to other sites. Full-scale implementation considerations are discussed.
Collapse
Affiliation(s)
- M M Michalsen
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, United States.
| | - A S King
- U.S. Army Corps of Engineers, Seattle District, Seattle, WA 98134, United States
| | - J D Istok
- School of Civil and Construction Engineering, Oregon State University, Corvallis, OR 97331, United States
| | - F H Crocker
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, MS 39180, United States
| | - M E Fuller
- Aptim Federal Services, Lawrenceville, NJ 08648, United States
| | - K H Kucharzyk
- Battelle Memorial Institute, 505 King Ave, Columbus, OH, 43201, United States
| | - M J Gander
- Naval Facilities Engineering Command, Northwest, 1101 Tautog Circle, Silverdale, WA 98113, United States
| |
Collapse
|
4
|
Jugnia LB, Manno D, Dodard S, Greer CW, Hendry M. Manipulating redox conditions to enhance in situ bioremediation of RDX in groundwater at a contaminated site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 676:368-377. [PMID: 31048167 DOI: 10.1016/j.scitotenv.2019.04.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 04/03/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Surficial application of waste glycerol (WG) for enhanced bioremediation was tested in situ at an old military range site to address hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) contaminated groundwater. This treatment was effective in inducing strong reducing conditions (range: -4 to -205 mV) and increasing the concentrations of organic carbon (from 10 to 729 mg/L) and fatty acids (from 0 to 940 mg/L) concomitantly with a decrease in RDX concentrations (range: 17 to 143 μg/L) to below detection limits (0.1 μg/L) in 2 of the 3 monitoring wells (MWs) evaluated. None of these changes were observed in the control MW. RDX disappeared without the detection of any common anaerobic nitroso degradation intermediates, with the exception of one MW where the concentration of organics did not significantly increase (range: 10 to 20 mg/L), suggesting the conditions were not favourable for biodegradation. Ecotoxicological analysis suggested that the use of WG may have some dose-related deleterious effects on different soil and aquatic receptors. Analysis of the microbial community composition, using 16S rRNA gene amplicon sequences, which provided insight into whether the process design had selected for and stimulated the optimal microbial populations, indicated co-existence of numerous Operational Taxonomic Units (OTUs) belonging to groups known to be capable of RDX degradation under anaerobic conditions, with a positive link between Geobacter spp. enrichment and the presence of RDX nitroso metabolites. Overall, the results from this field test show that this treatment process can provide an effective long-term, semi-passive remediation option for RDX contaminated groundwater.
Collapse
Affiliation(s)
- Louis-B Jugnia
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada.
| | - Dominic Manno
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Sabine Dodard
- Aquatic and Crop Resource Development Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Charles W Greer
- Energy, Mining and Environment Research Centre, National Research Council Canada, 6100 Royalmount Avenue, Montreal, Quebec H4P 2R2, Canada
| | - Meghan Hendry
- Department of National Defence, Garrison Petawawa, 4 CDSG Environmental Services, 101 Menin Road, Building S-600, P.O. Box 9999, Stn Main, Petawawa, Ontario K8H 2X3, Canada
| |
Collapse
|
5
|
Jung CM, Carr M, Blakeney GA, Indest KJ. Enhanced plasmid-mediated bioaugmentation of RDX-contaminated matrices in column studies using donor strain Gordonia sp. KTR9. J Ind Microbiol Biotechnol 2019; 46:1273-1281. [PMID: 31119503 DOI: 10.1007/s10295-019-02185-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/29/2019] [Indexed: 11/30/2022]
Abstract
Horizontal gene transfer (HGT) is the lateral movement of genetic material between organisms. The RDX explosive-degrading bacterium Gordonia sp. KTR9 has been shown previously to transfer the pGKT2 plasmid containing the RDX degradative genes (xplAB) by HGT. Overall, fitness costs to the transconjugants to maintain pGKT2 was determined through growth and survivability assessments. Rhodococcus jostii RHA1 transconjugants demonstrated a fitness cost while other strains showed minimal cost. Biogeochemical parameters that stimulate HGT of pGKT2 were evaluated in soil slurry mating experiments and the absence of nitrogen was found to increase HGT events three orders of magnitude. Experiments evaluating RDX degradation in flow-through soil columns containing mating pairs showed 20% greater degradation than columns with only the donor KTR9 strain. Understanding the factors governing HGT will benefit bioaugmentation efforts where beneficial bacteria with transferrable traits could be used to more efficiently degrade contaminants through gene transfer to native populations.
Collapse
Affiliation(s)
- Carina M Jung
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| | - Matthew Carr
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - G Alon Blakeney
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA
| | - Karl J Indest
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
6
|
Sowani H, Kulkarni M, Zinjarde S. Harnessing the catabolic versatility of Gordonia species for detoxifying pollutants. Biotechnol Adv 2019; 37:382-402. [DOI: 10.1016/j.biotechadv.2019.02.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 01/12/2019] [Accepted: 02/11/2019] [Indexed: 11/26/2022]
|
7
|
Kuyukina MS, Ivshina IB. Bioremediation of Contaminated Environments Using Rhodococcus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11461-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Fuller ME, Hatzinger PB, Condee CW, Andaya C, Rezes R, Michalsen MM, Crocker FH, Indest KJ, Jung CM, Alon Blakeney G, Istok JD, Hammett SA. RDX degradation in bioaugmented model aquifer columns under aerobic and low oxygen conditions. Appl Microbiol Biotechnol 2017; 101:5557-5567. [DOI: 10.1007/s00253-017-8269-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/22/2017] [Accepted: 03/27/2017] [Indexed: 10/19/2022]
|
9
|
Won J, Borden RC. Impact of glycerin and lignosulfonate on biodegradation of high explosives in soil. JOURNAL OF CONTAMINANT HYDROLOGY 2016; 194:1-9. [PMID: 27669376 DOI: 10.1016/j.jconhyd.2016.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/19/2016] [Accepted: 08/31/2016] [Indexed: 06/06/2023]
Abstract
Soil microcosms were constructed and monitored to evaluate the impact of substrate addition and transient aerobic and anaerobic conditions on TNT, RDX and HMX biodegradation in grenade range soils. While TNT was rapidly biodegraded under both aerobic and anaerobic conditions with and without organic substrate, substantial biodegradation of RDX, HMX, and RDX daughter products was not observed under aerobic conditions. However, RDX and HMX were significantly biodegraded under anaerobic conditions, without accumulation of TNT or RDX daughter products (2-ADNT, 4-ADNT, MNX, DNX, and TNX). In separate microcosms containing grenade range soil, glycerin and lignosulfonate addition enhanced oxygen consumption, increasing the consumption rate >200% compared to untreated soils. Mathematical model simulations indicate that oxygen consumption rates of 5 to 20g/m3/d can be achieved with reasonable amendment loading rates. These results indicate that glycerin and lignosulfonate can be potentially used to stimulate RDX and HMX biodegradation by increasing oxygen consumption rates in soil.
Collapse
Affiliation(s)
- Jongho Won
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695, USA.
| | - Robert C Borden
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Campus Box 7908, Raleigh, NC 27695, USA; Solutions-IES, Inc., 1101 Nowell Road, Raleigh, NC 27607, USA
| |
Collapse
|
10
|
Michalsen MM, King AS, Rule RA, Fuller ME, Hatzinger PB, Condee CW, Crocker FH, Indest KJ, Jung CM, Istok JD. Evaluation of Biostimulation and Bioaugmentation To Stimulate Hexahydro-1,3,5-trinitro-1,3,5,-triazine Degradation in an Aerobic Groundwater Aquifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:7625-7632. [PMID: 27301804 DOI: 10.1021/acs.est.6b00630] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Hexahydro-1,3,5-trinitro-1,3,5,-triazine (RDX) is a toxic and mobile groundwater contaminant common to military sites. This study compared in situ RDX degradation rates following bioaugmentation with Gordonia sp. strain KTR9 (henceforth KTR9) to rates under biostimulation conditions in an RDX-contaminated aquifer in Umatilla, OR. Bioaugmentation was achieved by injecting site groundwater (6000 L) amended with KTR9 cells (10(8) cells mL(-1)) and low carbon substrate concentrations (<1 mM fructose) into site wells. Biostimulation (no added cells) was performed by injecting groundwater amended with low (<1 mM fructose) or high (>15 mM fructose) carbon substrate concentrations in an effort to stimulate aerobic or anaerobic microbial activity, respectively. Single-well push-pull tests were conducted to measure RDX degradation rates for each treatment. Average rate coefficients were 1.2 day(-1) for bioaugmentation and 0.7 day(-1) for high carbon biostimulation; rate coefficients for low carbon biostimulation were not significantly different from zero (p values ≥0.060). Our results suggest that bioaugmentation with KTR9 is a feasible strategy for in situ biodegradation of RDX and, at this site, is capable of achieving RDX concentration reductions comparable to those obtained by high carbon biostimulation while requiring ~97% less fructose. Bioaugmentation has potential to minimize substrate quantities and associated costs, as well as secondary groundwater quality impacts associated with anaerobic biostimulation processes (e.g., hydrogen sulfide, methane production) during full-scale RDX remediation.
Collapse
Affiliation(s)
- Mandy M Michalsen
- Environmental Laboratory, U.S. Army Engineer Research and Development Center , Vicksburg, Mississippi 39180, United States
| | - Aaron S King
- Seattle District, U.S. Army Corps of Engineers , Seattle, Washington 98134, United States
| | - Rebecca A Rule
- Seattle District, U.S. Army Corps of Engineers , Seattle, Washington 98134, United States
| | - Mark E Fuller
- CB&I Federal Services, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Paul B Hatzinger
- CB&I Federal Services, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Charles W Condee
- CB&I Federal Services, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Fiona H Crocker
- Environmental Laboratory, U.S. Army Engineer Research and Development Center , Vicksburg, Mississippi 39180, United States
| | - Karl J Indest
- Environmental Laboratory, U.S. Army Engineer Research and Development Center , Vicksburg, Mississippi 39180, United States
| | - Carina M Jung
- Environmental Laboratory, U.S. Army Engineer Research and Development Center , Vicksburg, Mississippi 39180, United States
| | - Jack D Istok
- School of Civil and Construction Engineering, Oregon State University , Corvallis, Oregon 97331, United States
| |
Collapse
|
11
|
Zhu X, Liu R, Liu C, Chen L. Bioaugmentation with isolated strains for the removal of toxic and refractory organics from coking wastewater in a membrane bioreactor. Biodegradation 2015; 26:465-74. [PMID: 26510738 DOI: 10.1007/s10532-015-9748-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 10/24/2015] [Indexed: 11/24/2022]
Abstract
The bioaugmentation strains for phenol, pyridine, quinoline, carbazole, and naphthalene degradation were employed to treat coking wastewater in a membrane bioreactor (MBR). The results showed that the bioaugmented MBR was much better in pollutant removal than that of the control MBR with conventional activated sludge. Compared to the control MBR, the bioaugmented MBR displayed an additional 3.2 mg/L of phenol, pyridine, quinoline, naphthalene and carbazole in total by the addition of the degrading strains. Also, about 10 % of the chemical oxygen demand in the effluent was further removed by the bioaugmentation. The pyrosequencing analysis of the sludge in the MBRs revealed that the microbial community shifted in response to the addition of the degrading strains. The diversity of the microbial community increased during the bioaugmentation, and some bacterial taxa favorable to the removal of toxic and refractory pollutants appeared in the bioaugmented MBR. The results indicated that the use of high-efficiency bacteria was a feasible method for industrial coking wastewater treatment.
Collapse
Affiliation(s)
- Xiaobiao Zhu
- College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Rui Liu
- Key Laboratory of Water Science and Technology of Zhejiang Province, Jiaxing, 314006, People's Republic of China
| | - Cong Liu
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Lujun Chen
- School of Environment, Tsinghua University, Beijing, 100084, People's Republic of China.
- Key Laboratory of Water Science and Technology of Zhejiang Province, Jiaxing, 314006, People's Republic of China.
| |
Collapse
|
12
|
Crocker FH, Indest KJ, Jung CM, Hancock DE, Fuller ME, Hatzinger PB, Vainberg S, Istok JD, Wilson E, Michalsen MM. Evaluation of microbial transport during aerobic bioaugmentation of an RDX-contaminated aquifer. Biodegradation 2015; 26:443-51. [DOI: 10.1007/s10532-015-9746-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 09/26/2015] [Indexed: 10/23/2022]
|