1
|
Yang SNN, Kertesz MA, Coleman NV. Phylogenetic and Functional Diversity of Soluble Di-Iron Monooxygenases. Environ Microbiol 2025; 27:e70050. [PMID: 39947201 PMCID: PMC11825192 DOI: 10.1111/1462-2920.70050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/23/2024] [Accepted: 01/15/2025] [Indexed: 02/17/2025]
Abstract
Monooxygenase (MO) enzymes are responsible for the oxidation of hydrocarbons and other compounds in the carbon and nitrogen cycles, are important for the biodegradation of pollutants and can act as biocatalysts for chemical manufacture. The soluble di-iron monooxygenases (SDIMOs) are of interest due to their broad substrate range, high enantioselectivity and ability to oxidise inert substrates such as methane. Here, we re-examine the phylogeny and functions of these enzymes, using recent advances in the field and expansions in sequence diversity in databases to highlight relationships between SDIMOs and revisit their classification. We discuss the impact of horizontal gene transfer on SDIMO phylogeny, the potential of SDIMOs for the biodegradation of pollutants and the importance of heterologous expression as a tool for understanding SDIMO functions and enabling their use as biocatalysts. Our analysis highlights current knowledge gaps, most notably, the unknown substrate ranges and physiological roles of enzymes that have so far only been detected via genome or metagenome sequencing. Enhanced understanding of the diversity and functions of the SDIMO enzymes will enable better prediction and management of biogeochemical processes and also enable new applications of these enzymes for biocatalysis and bioremediation.
Collapse
Affiliation(s)
- Sui Nin Nicholas Yang
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Michael A. Kertesz
- School of Life and Environmental SciencesUniversity of SydneySydneyNew South WalesAustralia
| | - Nicholas V. Coleman
- Australian Genome Foundry and ARC Centre of Excellence in Synthetic BiologyMacquarie UniversitySydneyNew South WalesAustralia
| |
Collapse
|
2
|
Cupples AM, Dang H, Foss K, Bernstein A, Thelusmond JR. An investigation of soil and groundwater metagenomes for genes encoding soluble and particulate methane monooxygenase, toluene-4-monoxygenase, propane monooxygenase and phenol hydroxylase. Arch Microbiol 2024; 206:363. [PMID: 39073473 DOI: 10.1007/s00203-024-04088-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/17/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Soil and groundwater were investigated for the genes encoding soluble and particulate methane monooxygenase/ammonia monooxygenase (sMMO, pMMO/AMO), toluene 4-monooxygenase (T4MO), propane monooxygenase (PMO) and phenol hydroxylase (PH). The objectives were (1) to determine which subunits were present, (2) to examine the diversity of the phylotypes associated with the biomarkers and (3) to identify which metagenome associated genomes (MAGs) contained these subunits. All T4MO and PH subunits were annotated in the groundwater metagenomes, while few were annotated in the soil metagenomes. The majority of the soil metagenomes included only four sMMO subunits. Only two groundwater metagenomes contained five sMMO subunits. Gene counts for the pMMO subunits varied between samples. The majority of the soil metagenomes were annotated for all four PMO subunits, while three out of eight groundwater metagenomes contained all four PMO subunits. A comparison of the blast alignments for the sMMO alpha chain (mmoX) indicated the phylotypes differed between the soil and groundwater metagenomes. For the pMMO/AMO alpha subunit (pmoA/amoA), Nitrosospira was important for the soil metagenomes, while Methylosinus and Methylocystis were dominant for the groundwater metagenomes. The majority of pmoA alignments from both metagenomes were from uncultured bacteria. High quality MAGs were obtained from the groundwater data. Four MAGs (Methylocella and Cypionkella) contained sMMO subunits. Another three MAGs, within the order Pseudomonadales, contained all three pMMO subunits. All PH subunits were detected in seven MAGs (Azonexus, Rhodoferax, Aquabacterium). In those seven, all contained catechol 2,3-dioxagenase, and Aquabacterium also contained catechol 1,2-dioxygenase. T4MO subunits were detected in eight MAGs (Azonexus, Rhodoferax, Siculibacillus) and all, except one, contained all six subunits. Four MAGs (Rhodoferax and Azonexus) contained all subunits for PH and T4MO, as well as catechol 2,3-dixoygenase. The detection of T4MO and PH in groundwater metagenomes and MAGs has important implications for the potential oxidation of groundwater contaminants.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| | - Hongyu Dang
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Katy Foss
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| | - Anat Bernstein
- Zuckerberg Institute for Water Research, Ben Gurion University of the Negev, Beersheba, Israel
| | - Jean-Rene Thelusmond
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA
| |
Collapse
|
3
|
Tesfamariam EG, Luo YH, Zhou C, Ye M, Krajmalnik-Brown R, Rittmann BE, Tang Y. Simultaneous biodegradation kinetics of 1,4-dioxane and ethane. Biodegradation 2024; 35:371-388. [PMID: 37917252 DOI: 10.1007/s10532-023-10058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane's common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.
Collapse
Affiliation(s)
- Ermias Gebrekrstos Tesfamariam
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Ming Ye
- Department of Earth, Ocean and Atmospheric Science, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32304, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85281, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA.
| |
Collapse
|
4
|
Eshghdoostkhatami Z, Cupples AM. Occurrence of Rhodococcus sp. RR1 prmA and Rhodococcus jostii RHA1 prmA across microbial communities and their enumeration during 1,4-dioxane biodegradation. J Microbiol Methods 2024; 219:106908. [PMID: 38403133 DOI: 10.1016/j.mimet.2024.106908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/27/2024]
Abstract
1,4-Dioxane, a likely human carcinogen, is a co-contaminant at many chlorinated solvent contaminated sites. Conventional treatment technologies, such as carbon sorption or air stripping, are largely ineffective, and so many researchers have explored bioremediation for site clean-up. An important step towards this involves examining the occurrence of the functional genes associated with 1,4-dioxane biodegradation. The current research explored potential biomarkers for 1,4-dioxane in three mixed microbial communities (wetland sediment, agricultural soil, impacted site sediment) using monooxygenase targeted amplicon sequencing, followed by quantitative PCR (qPCR). A BLAST analysis of the sequencing data detected only two of the genes previously associated with 1,4-dioxane metabolism or co-metabolism, namely propane monooxygenase (prmA) from Rhodococcus jostii RHA1 and Rhodococcus sp. RR1. To investigate this further, qPCR primers and probes were designed, and the assays were used to enumerate prmA gene copies in the three communities. Gene copies of Rhodococcus RR1 prmA were detected in all three, while gene copies of Rhodococcus jostii RHA1 prmA were detected in two of the three sample types (except impacted site sediment). Further, there was a statistically significant increase in RR1 prmA gene copies in the microcosms inoculated with impacted site sediment following 1,4-dioxane biodegradation compared to the control microcosms (no 1,4-dioxane) or to the initial copy numbers before incubation. Overall, the results indicate the importance of Rhodococcus associated prmA, compared to other 1,4-dioxane degrading associated biomarkers, in three different microbial communities. Also, the newly designed qPCR assays provide a platform for others to investigate 1,4-dioxane biodegradation potential in mixed communities and should be of particular interest to those considering bioremediation as a potential 1,4-dioxane remediation approach.
Collapse
Affiliation(s)
- Zohre Eshghdoostkhatami
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
5
|
Wang P, Liu J, Han S, Wang Y, Duan Y, Liu T, Hou L, Zhang Z, Li L, Lin Y. Polyethylene mulching film degrading bacteria within the plastisphere: Co-culture of plastic degrading strains screened by bacterial community succession. JOURNAL OF HAZARDOUS MATERIALS 2023; 442:130045. [PMID: 36162306 DOI: 10.1016/j.jhazmat.2022.130045] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/15/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
As an ecological niche close to the polymer, microorganisms in the plastisphere possess the advantage of degrading plastics. This study aims to investigate the bacterial community succession and obtain degrading bacteria in the plastisphere, as well as identify the most efficient degradation combination by co-culture of multiple strains. The findings demonstrate the alpha-diversity indices of the plastisphere bacterial community are significantly lower, and the community structure is regularly and significantly altered. With the time of culture, the plastisphere community composition alters regularly, and the hydrocarbon-degrading genera become the core members. Functional prediction of community reveals the potential for Xenobiotics Biodegradation and Metabolism of plastisphere, and the apparent variations detections of polyethylene mulching film (PMF) indicating the PMF degrading ability of plastisphere. Besides, three PMF-degrading bacterial strains, Rhodopseudomonas sp. P1 (P), Rhodanobacter sp. Rs (R) and Microbacterium sp. M1 (M), are screened for co-culture with PMF degrading strain Bacillus aryabhattai 5-3 (B). By considering bacterial growth, biofilm adhesion, and apparent degradation of different samples, RB (R. sp. Rs + B. aryabhattai 5-3) is ultimately selected as the best PMF degradation combination. This study provides a new possibility for plastisphere-related research from the perspective of mitigating plastic pollution on agricultural land.
Collapse
Affiliation(s)
- Peiyuan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jiaxi Liu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Siqi Han
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yufan Wang
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Yifan Duan
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Tingting Liu
- College of Science, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Lijun Hou
- Department of Natural Resource Sciences, McGill University, Ste-Anne-de-Bellevue, Quebec H9X 3V9, Canada
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Li Li
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Yanbing Lin
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China; State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
6
|
Tusher TR, Inoue C, Chien MF. Efficient biodegradation of 1,4-dioxane commingled with additional organic compound: Role of interspecies interactions within consortia. CHEMOSPHERE 2022; 308:136440. [PMID: 36116621 DOI: 10.1016/j.chemosphere.2022.136440] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/15/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
Microbial consortia-mediated biodegradation of 1,4-dioxane (1,4-D), an emerging water contaminant, is always a superior choice over axenic cultures. Thus, better understanding of the functions of coexisting microbes and their interspecies interactions within the consortia is crucial for predicting biodegradation efficiency and designing efficient 1,4-D-degrading microbial consortia. This study evaluated how microbial community compositions and interspecies interactions govern the microbial consortia-mediated 1,4-D biodegradation by investigating the biodegradability and microbial community dynamics of both enriched (N112) and synthetic (SCDs and SCDNs) microbial consortia in the absence or presence of additional organic compound (AOC). In the absence of AOC, N112 exhibited 100% 1,4-D biodegradation efficiency at a rate of 12.5 mg/L/d, whereas the co-occurrence of AOC resulted in substrate-dependent biodegradation inhibition and thereby reduced the biodegradation efficiency and activity (2.0-10.0 mg/L/d). The coexistence and negative influence of certain low-abundant non-degraders on both 1,4-D-degraders and key non-degraders in N112 was identified as the prime cause behind such biodegradation inhibition. Comparing with N112, SCDN-1 composed of 1,4-D-degraders and key non-degraders significantly improved the 1,4-D biodegradation efficiency in the presence of AOC, confirming the absence of negative influence of low-abundant non-degraders and cooperative interactions between 1,4-D-degraders and key non-degraders in SCDN-1. On the contrary, both two-species and three-species SCDs comprised of only 1,4-D-degraders resulted in lower 1,4-D biodegradation efficiency as compared to SCDN-1 under all treatment conditions, while max. 91% 1,4-D biodegradation occurred by SCDs in the absence of AOC. These results were attributed to the negative interaction among 1,4-D-degraders and the absence of complementary roles of key non-degraders in SCDs. The findings improve our understanding of how interspecies interactions can regulate the intrinsic abilities and functions of coexisting microbes during biodegradation in complex environments and provide valuable guidelines for designing highly efficient and robust microbial consortia for practical bioremediation of 1,4-D like emerging organic contaminants.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan; Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
7
|
Tawfik A, Al-Sayed A, Hassan GK, Nasr M, El-Shafai SA, Alhajeri NS, Khan MS, Akhtar MS, Ahmad Z, Rojas P, Sanz JL. Electron donor addition for stimulating the microbial degradation of 1,4 dioxane by sequential batch membrane bioreactor: A techno-economic approach. CHEMOSPHERE 2022; 306:135580. [PMID: 35810864 DOI: 10.1016/j.chemosphere.2022.135580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
The presence of 1,4 dioxane in wastewater is associated with severe health and environmental issues. The removal of this toxic contaminant from the industrial effluents prior to final disposal is necessary. The study comprehensively evaluates the performance of sequential batch membrane bioreactor (MBR) for treating wastewater laden with 1,4 dioxane. Acetate was supplemented to the wastewater feed as an electron donor for enhancing and stimulating the microbial growing activities towards the degradation of 1,4 dioxane. The removal efficiency of 1,4 dioxane was maximized to 87.5 ± 6.8% using an acetate to dioxane (A/D) ratio of 4.0, which was substantially dropped to 31.06 ± 3.7% without acetate addition. Ethylene glycol, glyoxylic acid, glycolic acid, and oxalic acid were the main metabolites of 1,4 dioxane biodegradation using mixed culture bacteria. The 1,4 dioxane degrading bacteria, particularly the genus of Acinetobacter, were promoted to 92% at the A/D ratio of 4.0. This condition encouraged as well the increase of the main 1,4 dioxane degraders, i.e., Xanthomonadales (12.5%) and Pseudomonadales (9.1%). However, 50% of the Sphingobacteriales and 82.5% of Planctomycetes were reduced due to the inhibition effect of the 1,4 dioxane contaminate. Similarly, the relative abundance of Firmicutes, Verrucomicrobia, Chlamydiae, Actinobacteria, Chloroflexi, and Nitrospirae was reduced in the MBR at the A/D ratio of 4.0. The results derived from the microbial analysis and metabolites detection at different A/D ratios indicated that acetate supplementation (as an electron donor) maintained an essential role in encouraging the microorganisms to produce the monooxygenase enzymes responsible for the biodegradation process. Economic feasibility of such a MBR system showed that for a designed flow rate of 30 m3∙d-1, the payback period from reusing the treated wastewater would reach 6.6 yr. The results strongly recommend the utilization of mixed culture bacteria growing on acetate for removing 1,4 dioxane from the wastewater industry, achieving dual environmental and economic benefits.
Collapse
Affiliation(s)
- Ahmed Tawfik
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt.
| | - Aly Al-Sayed
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Gamal K Hassan
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Mahmoud Nasr
- Sanitary Engineering Department, Faculty of Engineering, Alexandria University, Alexandria, 21544, Egypt
| | - Saber A El-Shafai
- National Research Centre, Water Pollution Research Department, 33 El-Bohouth St., Dokki, P.O. 12622, Giza, Egypt
| | - Nawaf S Alhajeri
- Department of Environmental Technology Management, College of Life Sciences, Kuwait University, P.O. Box 5969, Safat 13060, Kuwait.
| | - Mohd Shariq Khan
- Department of Chemical Engineering, Dhofar University, Salalah, 211, Oman
| | - Muhammad Saeed Akhtar
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Zubair Ahmad
- School of Chemical Engineering, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Patricia Rojas
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| | - Jose L Sanz
- Universidad Autonoma de Madrid, Department of Molecular Biology, Madrid, 28049, Spain
| |
Collapse
|
8
|
Kikani M, Satasiya GV, Sahoo TP, Kumar PS, Kumar MA. Remedial strategies for abating 1,4-dioxane pollution-special emphasis on diverse biotechnological interventions. ENVIRONMENTAL RESEARCH 2022; 214:113939. [PMID: 35921903 DOI: 10.1016/j.envres.2022.113939] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
1,4-dioxane is a heterocyclic ether used as a polar industrial solvent and are released as waste discharges. 1,4-dioxane deteriorates health and quality, thereby attracts concern by the environment technologists. The need of attaining sustainable development goals have resulted in search of an eco-friendly and technically viable treatment strategy. This extensive review is aimed to emphasis on the (a) characteristics of 1,4-dioxane and their occurrence in the environment as well as their toxicity, (b) remedial strategies, such as physico-chemical treatment and advanced oxidation techniques. Special reference to bioremediation that involves diverse microbial strains and their mechanism are highlighted in this review. The role of macronutrients, stimulants and other abiotic cofactors in the biodegradation of 1,4-dioxane is discussed lucidly. We have critically discussed the inducible enzymes, enzyme-based remediation, distinct instrumental method of analyses to know the fate of intermediates produced from 1,4-dioxane biotransformation. This comprehensive survey also tries to put forth the different toxicity assessment tools used in evaluating the extent of detoxification of 1,4-dioxane achieved through biotransforming mechanism. Conclusively, the challenges, opportunities, techno-economic feasibility and future prospects of implementing 1,4-dioxane through biotechnological interventions are also discussed.
Collapse
Affiliation(s)
- Mansi Kikani
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Gopi Vijaybhai Satasiya
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India
| | - Tarini Prasad Sahoo
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai-603 110 (Tamil Nadu), India
| | - Madhava Anil Kumar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar-364 002 (Gujarat), India; Academy of Scientific and Innovative Research, Ghaziabad-201 002 (Uttar Pradesh), India.
| |
Collapse
|
9
|
Cupples AM, Li Z, Wilson FP, Ramalingam V, Kelly A. In silico analysis of soil, sediment and groundwater microbial communities to predict biodegradation potential. J Microbiol Methods 2022; 202:106595. [DOI: 10.1016/j.mimet.2022.106595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/30/2022] [Accepted: 09/30/2022] [Indexed: 12/27/2022]
|
10
|
Degradation of 1,4-dioxane by Newly Isolated Acinetobacter sp. M21 with Molasses as the Auxiliary Substrate. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Rolston H, Hyman M, Semprini L. Single-well push-pull tests evaluating isobutane as a primary substrate for promoting in situ cometabolic biotransformation reactions. Biodegradation 2022; 33:349-371. [PMID: 35553282 DOI: 10.1007/s10532-022-09987-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/20/2022] [Indexed: 11/02/2022]
Abstract
A series of single-well push-pull tests (SWPPTs) were performed to investigate the efficacy of isobutane (2-methylpropane) as a primary substrate for in situ stimulation of microorganisms able to cometabolically transform common groundwater contaminants, such as chlorinated aliphatic hydrocarbons and 1,4-dioxane (1,4-D). In biostimulation tests, the disappearance of isobutane relative to a nonreactive bromide tracer indicated an isobutane-utilizing microbial community rapidly developed in the aquifer around the test well. SWPPTs were performed as natural drift tests with first-order rates of isobutane consumption ranging from 0.4 to 1.4 day-1. Because groundwater contaminants were not present at the demonstration site, isobutene (2-methylpropene) was used as a nontoxic surrogate to demonstrate cometabolic activity in the subsurface after biostimulation. The transformation of isobutene to isobutene epoxide (2-methyl-1,2-epoxypropane) illustrates the epoxidation process previously shown for common groundwater contaminants after cometabolic transformation by alkane-utilizing bacteria. The rate and extent of isobutene consumption and the formation and transformation of isobutene epoxide were greater in the presence of isobutane, with no evidence of primary substrate inhibition. Modeled concentrations of isobutane-utilizing biomass in microcosms constructed with groundwater collected before and after each SWPPT offered additional evidence that the isobutane-utilizing microbial community was stimulated in the aquifer. Experiments in groundwater microcosms also demonstrated that the isobutane-utilizing bacteria stimulated in the subsurface could cometabolically transform a mixture of co-substrates including isobutene, 1,1-dichloroethene, cis-1,2-dichloroethene, and 1,4-D with the same co-substrate preferences as the bacterium Rhodococcus rhodochrous ATCC strain 21198 after growth on isobutane. This study demonstrated the effectiveness of isobutane as primary substrate for stimulating in situ cometabolic activity and the use of isobutene as surrogate to investigate in situ cometabolic reactions catalyzed by isobutane-stimulated bacteria.
Collapse
|
12
|
Environmental Potential for Microbial 1,4-Dioxane Degradation Is Sparse despite Mobile Elements Playing a Role in Trait Distribution. Appl Environ Microbiol 2022; 88:e0209121. [PMID: 35297726 DOI: 10.1128/aem.02091-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
1,4-Dioxane (dioxane) is an emerging contaminant of concern for which bioremediation is seen as a promising solution. To date, eight distinct gene families have been implicated in dioxane degradation, though only dioxane monooxygenase (DXMO) from Pseudonocardia dioxanivorans is routinely used as a biomarker in environmental surveys. In order to assess the functional and taxonomic diversity of bacteria capable of dioxane degradation, we collated existing, poorly-organized information on known biodegraders to create a curated suite of biomarkers with confidence levels for assessing 1,4-dioxane degradation potential. The characterized enzyme systems for dioxane degradation are frequently found on mobile elements, and we identified that many of the curated biomarkers are associated with other hallmarks of genomic rearrangements, indicating lateral gene transfer plays a role in dissemination of this trait. This is contrasted by the extremely limited phylogenetic distribution of known dioxane degraders, where all representatives belong to four classes within three bacterial phyla. Based on the curated set of expanded biomarkers, a search of more than 11,000 publicly available metagenomes identified a sparse and taxonomically limited distribution of potential dioxane degradation proteins. Our work provides an important and necessary structure to the current knowledge base for dioxane degradation and clarifies the potential for natural attenuation of dioxane across different environments. It further highlights a disconnect between the apparent mobility of these gene families and their limited distributions, indicating dioxane degradation may be difficult to integrate into a microorganism's metabolism. IMPORTANCE New regulatory limits for 1,4-dioxane in groundwater have been proposed or adopted in many countries, including the United States and Canada, generating a direct need for remediation options as well as better tools for assessing the fate of dioxane in an environment. A comprehensive suite of biomarkers associated with dioxane degradation was identified and then leveraged to examine the global potential for dioxane degradation in natural and engineered environments. We identified consistent differences in the dioxane-degrading gene families associated with terrestrial, aquatic, and wetland environments, indicating reliance on a single biomarker for assessing natural attenuation of dioxane is likely to miss key players. Most environments do not currently host the capacity for dioxane degradation-the sparse distribution of dioxane degradation potential highlights the need for bioaugmentation approaches over biostimulation of naturally occurring microbial communities.
Collapse
|
13
|
Li J, Wang B, Yang Q, Si H, Zhao Y, Zheng Y, Peng W. Enabling Efficient Genetic Manipulations in a Rare Actinomycete Pseudonocardia alni Shahu. Front Microbiol 2022; 13:848964. [PMID: 35308340 PMCID: PMC8928166 DOI: 10.3389/fmicb.2022.848964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/01/2022] [Indexed: 11/13/2022] Open
Abstract
Pseudonocardia species are emerging as important microorganisms of global concern with unique and increasingly significant ecological roles and represent a prominent source of bioactive natural products, but genetic engineering of these organisms for biotechnological applications is greatly hindered due to the limitation of efficient genetic manipulation tools. In this regard, we report here the establishment of an efficient genetic manipulation system for a newly isolated strain, Pseudonocardia alni Shahu, based on plasmid conjugal transfer from Escherichia coli to Pseudonocardia. Conjugants were yielded upon determining the optimal ratio between the donor and recipient cells, and designed genome modifications were efficiently accomplished, including exogenous gene integration based on an integrative plasmid and chromosomal stretch removal by homologous recombination using a suicidal non-replicating vector. Collectively, this work has made the P. alni Shahu accessible for genetic engineering, and provided an important reference for developing genetic manipulation methods in other rare actinomycetes.
Collapse
Affiliation(s)
- Jie Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
| | - Baiyang Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- Department of Microbiology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qing Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Han Si
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yuting Zhao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
| | - Yanli Zheng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, China
- *Correspondence: Yanli Zheng,
| | - Wenfang Peng
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Engineering Research Center for Bio-enzyme Catalysis, Environmental Microbial Technology Center of Hubei Province, School of Life Sciences, Hubei University, Wuhan, China
- Wenfang Peng,
| |
Collapse
|
14
|
Zan ZY, Ge XF, Huang RR, Liu WZ. Pseudonocardia humida sp. nov., an Actinomycete Isolated from Mangrove Soil Showing Distinct Distribution Pattern of Biosynthetic Gene Clusters. Curr Microbiol 2022; 79:87. [PMID: 35129703 DOI: 10.1007/s00284-022-02784-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/24/2022] [Indexed: 11/03/2022]
Abstract
A novel actinomycete strain, designated S2-4T, was isolated from a mangrove soil sample, and a polyphasic approach was employed to determine its taxonomic position. Phylogenetic analysis based on 16S rRNA gene indicated that strain S2-4T formed a unique clade next to that harboring Pseudonocardia dioxanivorans CB1190T, which shared the highest sequence similarity (98.20%) with the new isolate. Phylogenetic analysis based on core genes of genomic sequences displayed a different scenario, exhibiting closer phylogenetic relationship of strain S2-4T with several species with 16S rRNA gene sequence similarities ranging from 96.95 to 98.06%, which was confirmed by the phylogenetic tree reconstructed based on genomic sequences. Further, substantial differences between the genotypic properties of strain S2-4T and its closest neighbors, including digital DNA-DNA hybridization, average nucleotide identity, and distribution patterns of biosynthetic gene clusters (BGC), indicated the taxonomic position of strain S2-4T as a novel species of the genus Pseudonocardia. Accordingly, strain S2-4T was observed to show a different distribution pattern of a predicted BGC encoding ectoine by comparative genomic analysis, which could be strongly linked to its unique habitat distinct from where its close neighbors were isolated. The major cellular fatty acids were iso-C15:0, C21:0, and iso-C16:0. The predominant menaquinone was MK-8(H4). The polar lipids were composed of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, phosphatidyl-N-monomethylethanolamine, phosphatidylcholine, phosphatidylinositol, phosphatidylinositol mannosides, and two unidentified glycolipids. Here, we propose a novel species of the genus Pseudonocardia: Pseudonocardia humida sp. nov. with the type strain S2-4T (= JCM 34291T = CGMCC 4.7706T).
Collapse
Affiliation(s)
- Zhen-Yu Zan
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Xian-Feng Ge
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Rui-Rui Huang
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China
| | - Wen-Zheng Liu
- School of Food and Pharmaceutical Engineering, Nanjing Normal University, Xuelin Road No. 2, Nanjing, 210023, People's Republic of China.
| |
Collapse
|
15
|
A multicomponent THF hydroxylase initiates tetrahydrofuran degradation in Cupriavidus metallidurans ZM02. Appl Environ Microbiol 2022; 88:e0188021. [PMID: 35108100 DOI: 10.1128/aem.01880-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) has been recognized as a water contaminant because of its human carcinogenicity, extensive use, and widespread distribution. Previously reported multicomponent monooxygenases (MOs) involved in THF degradation were highly conserved, and all of them were from Gram-positive bacteria. In this study, a novel THF-degrading gene cluster (dmpKLMNOP) encoding THF hydroxylase was identified on the chromosome of a newly isolated Gram-negative THF-degrading bacterium, Cupriavidus metallidurans ZM02, and functionally characterized. Transcriptome sequencing and RT-qPCR demonstrated that the expression of dmpKLMNOP was upregulated during the growth of strain ZM02 on THF or phenol. The deletion of oxygenase alpha or beta subunit or the reductase component disrupted the degradation of THF but did not affect the utilization of its hydroxylated product 2-hydroxytetrahydrofuran. Cupriavidus pinatubonensis JMP134 heterologously expressing dmpKLMNOP from strain ZM02 could grow on THF, indicating that the THF hydroxylase DmpZM02KLMNOP is responsible for the initial degradation of THF. Furthermore, the THF and phenol oxidation activities of crude enzyme extracts were detected, and the highest THF and phenol catalytic activities were 1.38±0.24 μmol min-1 mg-1 and 1.77±0.37 μmol min-1 mg-1, respectively, with the addition of NADPH and Fe2+. The characterization of THF hydroxylase associated with THF degradation enriches our understanding of THF-degrading gene diversity and provides a novel potential enzyme for the bioremediation of THF-containing pollutants. IMPORTANCE Multicomponent MOs catalyzing the initial hydroxylation of THF are vital rate-limiting enzymes in the THF degradation pathway. Previous studies of THF degradation gene clusters have focused on Gram-positive bacteria, and the molecular mechanism of THF degradation in Gram-negative bacteria has rarely been reported. In this study, a novel THF hydroxylase encoded by dmpKLMNOP in strain ZM02 was identified to be involved in both THF and phenol degradation. Our findings provide new insights into the THF-degrading gene cluster and enzymes in Gram-negative bacteria.
Collapse
|
16
|
Ramos-García ÁA, Walecka-Hutchison C, Freedman DL. Effect of biostimulation and bioaugmentation on biodegradation of high concentrations of 1,4-dioxane. Biodegradation 2022; 33:157-168. [PMID: 35102492 DOI: 10.1007/s10532-022-09971-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/19/2022] [Indexed: 11/26/2022]
Abstract
1,4-Dioxane is a pervasive and persistent contaminant in numerous aquifers. Although the median concentration in most contaminant plumes is in the microgram per liter range, a subset of sites have contamination in the milligram per liter range. Most prior studies that have examined 1,4-dioxane concentrations in the hundreds of milligrams per liter range have been performed with industrial wastewater. The main objective of this study was to evaluate aerobic biodegradation of 1,4-dioxane in microcosms prepared with soil and groundwater from a site where concentrations range from ~ 1500 mg·L-1 in the source zone, to 450 mg·L-1 at a midpoint of the groundwater plume, and to 6 mg·L-1 at a down-gradient location. Treatments included biostimulation with propane, addition of propane and a propanotrophic enrichment culture (ENV487), and unamended. The highest rates of biodegradation for each location in the plume occurred in the bioaugmented treatments, although indigenous propanotrophs also biodegraded 1,4-dioxane to below 25 µg·L-1. Nutrient additions were required to sustain biodegradation of propane and cometabolism of 1,4-dioxane. Among the unamended treatments, biodegradation of 1,4-dioxane was detected in the mid-gradient microcosms. An isolate was obtained that grows on 1,4-dioxane as a sole source of carbon and energy and identified through whole-genome sequencing as Pseudonocardia dioxivorans BERK-1. In a prior study, the same strain was isolated from an aquifer in the southeastern United States. Monod kinetic parameters for BERK-1 are similar to those for strain CB1190.
Collapse
Affiliation(s)
- Ángel A Ramos-García
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA
| | | | - David L Freedman
- Department of Environmental Engineering & Earth Sciences, Clemson University, Clemson, SC, 29634-0919, USA.
| |
Collapse
|
17
|
Kamba S, Ogura A, Miura Y, Hasegawa M. Enrichment of Uncommon Bacteria in Soil by Fractionation Using a Metal Mesh Device. ANAL SCI 2021; 37:1295-1300. [PMID: 33678730 DOI: 10.2116/analsci.21p042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The use of a metal mesh device (MMD) as a precision bacterial separation filter is described. The MMD uses a structure in which identically shaped pores are arranged in a thin metal membrane. Four types of MMD with different pore sizes were used to fractionate bacteria in two types of soil. Through metagenomic analysis, the distribution of bacteria in the soil samples and in each MMD fraction was examined. In addition, eight types of previously described organic compound-degrading bacteria were used to evaluate the method, and changes in their composition following MMD fractionation were investigated. It was found that MMD fractions were enriched for all eight bacteria when compared with the initial sample. These results suggest that bacterial fractionation using MMD can enrich bacteria occurring at low frequencies in environmental samples.
Collapse
Affiliation(s)
| | - Atsushi Ogura
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology
| | | | - Makoto Hasegawa
- Graduate School of Bioscience, Nagahama Institute of Bio-Science and Technology
| |
Collapse
|
18
|
Zhang D, Su ZY, Li L, Tang WZ. Rhodococcus spongiicola sp. nov. and Rhodococcus xishaensis sp. nov., from marine sponges. Int J Syst Evol Microbiol 2021; 71. [PMID: 34296990 DOI: 10.1099/ijsem.0.004863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Two novel Rhodococcus strains, LHW50502T and LHW51113T, were isolated from marine sponges obtained on Xisha Island, Hainan Province, PR China. Rods and cocci, typical characteristics of the genus Rhodococcus, were observed. The strains contained meso-diaminopimelic acid as the diagnostic diamino acid in the cell-wall hydrolysates and galactose, arabinose, ribose and glucose as the whole-cell sugars. The major fatty acid identified was C16 : 0. MK-8(H4) was the predominat menaquinone of both strains. Stains LHW50502T and LHW51113T had almost identical (99.6 %) 16S rRNA gene sequences but shared relatively low similarities with previously characterized Rhodococcus species (well below 98.7 %). The results of phylogenetic analysis supported their closest relationship; however, the average nucleotide identity and digital DNA-DNA hybridization values between these two strains indicated that they belonged to distinct species. Taken together, the results of this study indicate that strains LHW50502T and LHW51113T represent two novel species of the genus Rhodococcus, for which the names Rhodococcus spongiicola sp. nov. (type strain LHW50502T=DSM 106291T=CCTCC AA 2018033T) and Rhodococcus xishaensis sp. nov. (type strain LHW51113T=DSM 106204T=CCTCC AA 2018034T) are proposed.
Collapse
Affiliation(s)
- Die Zhang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, PR China.,Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China.,College of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110000, PR China
| | - Zhi-You Su
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Lei Li
- Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| | - Wei-Zhuo Tang
- College of Biological and Environmental Engineering, Changsha University, Changsha 410022, PR China.,Marine Drugs Research Center, State Key Laboratory of Oncogenes and Related Genes, Department of Pharmacy, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, PR China
| |
Collapse
|
19
|
Inoue D, Yoshikawa T, Okumura T, Yabuki Y, Ike M. Treatment of 1,4-dioxane-containing water using carriers immobilized with indigenous microorganisms in landfill leachate treatment sludge: A laboratory-scale reactor study. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125497. [PMID: 33652223 DOI: 10.1016/j.jhazmat.2021.125497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 02/02/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
1,4-Dioxane (DX) is a contaminant of emerging concern in aquatic environments, and is frequently found in landfill leachate. As a biological method applicable to landfill leachate treatment facilities, the feasibility of DX treatment using carriers immobilized with microorganisms indigenous to landfill leachate treatment sludge was explored through laboratory-scale reactor experiments by introducing carriers prepared via microorganism immobilization in the aeration tank of a leachate treatment facility. Three different carrier materials were used to immobilize microorganisms, and a model DX-containing water (10 mg/L) was treated under continuous feeding. Biological DX removal to < 0.5 mg/L was achieved using all carrier types, thereby adhering to the effluent standard for landfill leachate in Japan, which confirms the usefulness of the proposed method. However, weaker aeration and enhanced DX loading drastically impaired the DX removal performance depending on the carrier materials. This suggests the importance of carrier selection and control of the operational variables to ensure stable and effective DX removal. Microbial community analyses revealed that Pseudonocardia with thm genes may largely contribute to the initial oxidation of DX, irrespective of the carrier type, suggesting the importance of this population for the continuous treatment of low DX concentrations with mixed microbial consortia.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Takumi Yoshikawa
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takuya Okumura
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshinori Yabuki
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 442 Syakudo, Habikino, Osaka 583-0862, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
20
|
Chen R, Miao Y, Liu Y, Zhang L, Zhong M, Adams JM, Dong Y, Mahendra S. Identification of novel 1,4-dioxane degraders and related genes from activated sludge by taxonomic and functional gene sequence analysis. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125157. [PMID: 33540262 DOI: 10.1016/j.jhazmat.2021.125157] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
This study used integrated omics technologies to investigate the potential novel pathways and enzymes for 1,4-dioxane degradation by a consortium enriched from activated sludge of a domestic wastewater treatment plant. An unclassified genus belonging to Xanthobacteraceae increased significantly after magnetic nanoparticle-mediated isolation for 1,4-dioxane degraders. Species with relatively higher abundance (> 0.3%) were identified to present high metabolic activities in the biodegradation process through shotgun sequencing. The functional gene investigations revealed that Xanthobacter sp. 91, Xanthobacter sp. 126, and a Rhizobiales strain carried novel 1,4-dioxane-hydroxylating monooxygenase genes. Xanthobacter sp. 126 contained the genes coding for glycolate oxidase, which was the main enzyme responsible for utilization of 1,4-dioxane intermediates through the TCA cycle, and further proven by the specific glycolate oxidase inhibitor, α-hydroxy-2-pyridinemethanesulfonic acid. An expanded and detailed degradation pathway of 1,4-dioxane was proposed on the basis of the three major intermediates (2-hydroxy-1,4-dioxane, ethylene glycol, and oxalic acid) confirmed by metabolomics. These findings of microbial community and function as well as the novel pathway will be valuable in predicting natural attenuation or reconstruction of a bacterial consortium for enhanced remediation of 1,4-dioxane-contaminated sites as well as wastewater treatment.
Collapse
Affiliation(s)
- Ruihuan Chen
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yu Miao
- Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| | - Yun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China; National Engineering Laboratory of Site Remediation Technologies, Beijing 100015, China.
| | - Lan Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Ming Zhong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | | | - Yuanhua Dong
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100000, China
| | - Shaily Mahendra
- Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA
| |
Collapse
|
21
|
Bobadilla Alvarez MC, Palomino Cadenas EJ. CONTROL DE Aedes aegypti (DIPTERA: CULICIDAE) MEDIANTE ACTINOBACTERIAS FORMADORAS DE BIOPELÍCULAS. ACTA BIOLÓGICA COLOMBIANA 2021. [DOI: 10.15446/abc.v26n3.86966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El phylum Actinobacteria incluye miembros productores de compuestos bioinsecticidas. No obstante, la sobreexplotacion de metabolitos derivados de Streptomyces ha conllevado a explorar nuevas moléculas provenientes de bacterias no estreptomicetos para contrarrestar la resistencia a insecticidas químicos en Aedes aegypti. Concordantes con el uso de bioagentes ecológicos, esta investigación caracterizó actinobacterias formadoras de biopelículas con el fin de evaluar su dinámica de crecimiento, actividad larvicida y efectos subletales. La identificación, crecimiento de biopelículas y bioactividades se realizaron por cultivos, análisis de imágenes por fotomicrografía y bioensayos. Los resultados mostraron que las biopelículas pertenecen a Pseudonocardiaceae (PsA1TA) y Corynebacteriaceae (CoA2CA) característicamente dependientes del revestimiento cuticular. PsA1TA coloniza estructuras membranosas de tórax y abdomen con microcolonias aleatoriamente distribuidas que desarrollan a extensas biopelículas mono y biestratificadas, al cubrir cuatro veces la amplitud toracoabdominal (envergadura infectiva entre 1010 µm a 1036 µm). En contraste, CoA2CA envuelve radialmente estructuras esclerotizadas cefálica y anal al triplicar la amplitud de tales órganos (1820 a 2030 µm y 1650 a 1860 µm, respectivamente). Las biopelículas ejercieron mortalidad diferenciada a todos los estadios larvales, no obstante, PsA1TA resultó más mortal y virulento en el segundo estadio larval (58 %-96 horas, TL50: 3,4 días), mientras que CoA2CA lo fue en el cuarto estadio larval (85 %-96 horas, TL50: 2,5 días). CoA2CA indujo emergencia incompleta de adultos farados y despliegue de tarsos curvos en emergentes, además de revestir con robustas biopelículas cadáveres larvarios. Las biopelículas actinobacterianas revelaron ejercer función larvicida y respuestas subletales en A. aegypti.
Collapse
|
22
|
Luo YH, Long X, Wang B, Zhou C, Tang Y, Krajmalnik-Brown R, Rittmann BE. A Synergistic Platform for Continuous Co-removal of 1,1,1-Trichloroethane, Trichloroethene, and 1,4-Dioxane via Catalytic Dechlorination Followed by Biodegradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:6363-6372. [PMID: 33881824 DOI: 10.1021/acs.est.1c00542] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Groundwater co-contaminated with 1,4-dioxane, 1,1,1-trichloroethane (TCA), and trichloroethene (TCE) is among the most urgent environmental concerns of the U.S. Department of Defense (DoD), U.S. Environmental Protection Agency (EPA), and industries related to chlorinated solvents. Inspired by the pressing need to remove all three contaminants at many sites, we tested a synergistic platform: catalytic reduction of 1,1,1-TCA and TCE to ethane in a H2-based membrane palladium-film reactor (H2-MPfR), followed by aerobic biodegradation of ethane and 1,4-dioxane in an O2-based membrane biofilm reactor (O2-MBfR). During 130 days of continuous operation, 1,1,1-TCA and TCE were 95-98% reductively dechlorinated to ethane in the H2-MPfR, and ethane served as the endogenous primary electron donor for promoting 98.5% aerobic biodegradation of 1,4-dioxane in the O2-MBfR. In addition, the small concentrations of the chlorinated intermediate from the H2-MPfR, dichloroethane (DCA) and monochloroethane (MCA), were fully biodegraded through aerobic biodegradation in the O2-MBfR. The biofilms in the O2-MBfR were enriched in phylotypes closely related to the genera Pseudonocardia known to biodegrade 1,4-dioxane.
Collapse
Affiliation(s)
- Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Xiangxing Long
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, Tempe, Arizona 85008, United States
| | - Boya Wang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, United States
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, Arizona 85287 United States
| |
Collapse
|
23
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Isolation and Characterization of Novel Bacteria Capable of Degrading 1,4-Dioxane in the Presence of Diverse Co-Occurring Compounds. Microorganisms 2021; 9:887. [PMID: 33919159 PMCID: PMC8143092 DOI: 10.3390/microorganisms9050887] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 11/17/2022] Open
Abstract
Biodegradation is found to be a promising, cost-effective and eco-friendly option for the treatment of industrial wastewater contaminated by 1,4-dioxane (1,4-D), a highly stable synthetic chemical and probable human carcinogen. This study aimed to isolate, identify, and characterize metabolic 1,4-D-degrading bacteria from a stable 1,4-D-degrading microbial consortium. Three bacterial strains (designated as strains TS28, TS32, and TS43) capable of degrading 1,4-D as a sole carbon and energy source were isolated and identified as Gram-positive Pseudonocardia sp. (TS28) and Gram-negative Dokdonella sp. (TS32) and Afipia sp. (TS43). This study, for the first time, confirmed that the genus Dokdonella is involved in the biodegradation of 1,4-D. The results reveal that all of the isolated strains possess inducible 1,4-D-degrading enzymes and also confirm the presence of a gene encoding tetrahydrofuran/dioxane monooxygenase (thmA/dxmA) belonging to group 5 soluble di-iron monooxygenases (SDIMOs) in both genomic and plasmid DNA of each of the strains, which is possibly responsible for the initial oxidation of 1,4-D. Moreover, the isolated strains showed a broad substrate range and are capable of degrading 1,4-D in the presence of additional substrates, including easy-to-degrade compounds, 1,4-D biodegradation intermediates, structural analogs, and co-contaminants of 1,4-D. This indicates the potential of the isolated strains, especially strain TS32, in removing 1,4-D from contaminated industrial wastewater containing additional organic load. Additionally, the results will help to improve our understanding of how multiple 1,4-D-degraders stably co-exist and interact in the consortium, relying on a single carbon source (1,4-D) in order to develop an efficient biological 1,4-D treatment system.
Collapse
Affiliation(s)
- Tanmoy Roy Tusher
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
- Department of Environmental Science and Resource Management, Mawlana Bhashani Science and Technology University, Santosh, Tangail-1902, Bangladesh
| | - Takuya Shimizu
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| | - Mei-Fang Chien
- Graduate School of Environmental Studies, Tohoku University, Sendai 980–8579, Japan; (T.R.T.); (T.S.); (C.I.)
| |
Collapse
|
24
|
Molina-Menor E, Gimeno-Valero H, Pascual J, Peretó J, Porcar M. High Culturable Bacterial Diversity From a European Desert: The Tabernas Desert. Front Microbiol 2021; 11:583120. [PMID: 33488536 PMCID: PMC7821382 DOI: 10.3389/fmicb.2020.583120] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/27/2020] [Indexed: 12/14/2022] Open
Abstract
One of the most diverse ecological niches for microbial bioprospecting is soil, including that of drylands. Drylands are one of the most abundant biomes on Earth, but extreme cases, such as deserts, are considered very rare in Europe. The so-called Tabernas Desert is one of the few examples of a desert area in continental Europe, and although some microbial studies have been performed on this region, a comprehensive strategy to maximize the isolation of environmental bacteria has not been conducted to date. We report here a culturomics approach to study the bacterial diversity of this dryland by using a simple strategy consisting of combining different media, using serial dilutions of the nutrients, and using extended incubation times. With this strategy, we were able to set a large (254 strains) collection of bacteria, the majority of which (93%) were identified through 16S ribosomal RNA (rRNA) gene amplification and sequencing. A significant fraction of the collection consisted of Actinobacteria and Proteobacteria, as well as Firmicutes strains. Among the 254 isolates, 37 different genera were represented, and a high number of possible new taxa were identified (31%), of which, three new Kineococcus species. Moreover, 5 out of the 13 genera represented by one isolate were also possible new species. Specifically, the sequences of 80 isolates held a percentage of identity below the 98.7% threshold considered for potentially new species. These strains belonged to 20 genera. Our results reveal a clear link between medium dilution and isolation of new species, highlight the unexploited bacterial biodiversity of the Tabernas Desert, and evidence the potential of simple strategies to yield surprisingly large numbers of diverse, previously unreported, bacterial strains and species.
Collapse
Affiliation(s)
- Esther Molina-Menor
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain
| | - Helena Gimeno-Valero
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Javier Pascual
- Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, Burjassot, Spain
| | - Manuel Porcar
- Institute for Integrative Systems Biology I2SysBio (University of València-CSIC), Paterna, Spain.,Darwin Bioprospecting Excellence S.L., Parc Científic Universitat de València, Paterna, Spain
| |
Collapse
|
25
|
Höppner A, Bollinger A, Kobus S, Thies S, Coscolín C, Ferrer M, Jaeger KE, Smits SHJ. Crystal structures of a novel family IV esterase in free and substrate-bound form. FEBS J 2021; 288:3570-3584. [PMID: 33342083 DOI: 10.1111/febs.15680] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/26/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Bacterial lipolytic enzymes of family IV are homologs of the mammalian hormone-sensitive lipases (HSL) and have been successfully used for various biotechnological applications. The broad substrate specificity and ability for enantio-, regio-, and stereoselective hydrolysis are remarkable features of enzymes from this class. Many crystal structures are available for esterases and lipases, but structures of enzyme-substrate or enzyme-inhibitor complexes are less frequent although important to understand the molecular basis of enzyme-substrate interaction and to rationalize biochemical enzyme characteristics. Here, we report on the structures of a novel family IV esterase isolated from a metagenomic screen, which shows a broad substrate specificity. We solved the crystal structures in the apo form and with a bound substrate analogue at 1.35 and 1.81 Å resolution, respectively. This enzyme named PtEst1 hydrolyzed more than 60 out 96 structurally different ester substrates thus being substrate promiscuous. Its broad substrate specificity is in accord with a large active site cavity, which is covered by an α-helical cap domain. The substrate analogue methyl 4-methylumbelliferyl hexylphosphonate was rapidly hydrolyzed by the enzyme leading to a complete inactivation caused by covalent binding of phosphinic acid to the catalytic serine. Interestingly, the alcohol leaving group 4-methylumbelliferone was found remaining in the active site cavity, and additionally, a complete inhibitor molecule was found at the cap domain next to the entrance of the substrate tunnel. This unique situation allowed gaining valuable insights into the role of the cap domain for enzyme-substrate interaction of esterases belonging to family IV. DATABASE: Structural data of PtEst1 are available in the worldwide protein data bank (https://www.rcsb.org) under the accession codes: 6Z68 (apo-PtEst1) and 6Z69 (PtEst1-inhibitor complex).
Collapse
Affiliation(s)
- Astrid Höppner
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alexander Bollinger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Jülich, Germany
| | - Stefanie Kobus
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Jülich, Germany
| | - Cristina Coscolín
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies, Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Biochemistry, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
26
|
Abstract
In this study, a microbial community of bacteria was investigated for 1,4-dioxane(1,4-D) biodegradation. The enriched culture was investigated for 1,4-dioxane mineralization, co-metabolism of 1,4-dioxane and extra carbon sources, and characterized 1,4-dioxane biodegradation kinetics. The mineralization test indicates that the enriched culture was able to degrade 1,4-dioxane as the sole carbon and energy source. Interestingly, the distribution of 1,4-dioxane into the final biodegrading products were 36.9% into biomass, 58.3% completely mineralized to CO2, and about 4% escaped as VOC. The enriched culture has a high affinity with 1,4-dioxane during biodegradation. The kinetic coefficients of the Monod equation were qmax = 0.0063 mg 1,4-D/mg VSS/h, Ks = 9.42 mg/L, YT = 0.43 mg VSS/mg 1,4-dioxane and the decay rate was kd = 0.023 mg/mg/h. Tetrahydrofuran (THF) and ethylene glycol were both consumed together with 1,4-dioxane by the enriched culture; however, ethylene glycol did not show any influence on 1,4-dioxane biodegradation, while THF proved to be a competitive.
Collapse
|
27
|
Navada KK, Kulal A. Kinetic characterization of purified laccase from Trametes hirsuta: a study on laccase catalyzed biotransformation of 1,4-dioxane. Biotechnol Lett 2020; 43:613-626. [PMID: 33146857 DOI: 10.1007/s10529-020-03038-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 10/26/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Laccase is one of the best known biocatalysts which degrade wide varieties of complex molecules that are both non-cyclic and cyclic in structure. The study focused on enzyme kinetics of a purified laccase from Trametes hirsuta L. fungus and its application on biotransformation of a carcinogenic molecule 1,4-dioxane. RESULTS Laccase was purified from white-rot fungus T. hirsuta L. which showed specific activity of 978.34 U/mg after the purification fold of 54.08. The stable laccase activity (up to 16 h) is shown at 4-6 pH and 20-40 °C temperature range. The purified enzyme exhibited significant stability for 10 metal ions up to 10 mM concentration, except for Fe2+ and Hg2+. The Cu2+ ion induced laccase activity up to 142% higher than the control at 10 mM concentration. The laccase enzyme kinetic parameters Km was 20 ± 5 µM and 400 ± 60 µM, whereas Kcat was 198.29 ± 0.18/s and 80.20 ± 1.59/s for 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol respectively. The cyclic ether 1,4-dioxane (100 ppm) was completely degraded in presence of purified laccase within 2 h of incubation and it was confirmed by HPLC and GC analysis. The oxidation reaction was accelerated by 25, 22, 6 and 19% in presence of 1 mM syringaldehyde, vanillin, ABTS and guaiacol mediators respectively. CONCLUSIONS In this study, fungal laccase (a natural biocatalyst) based degradation of synthetic chemical 1,4-dioxane was reported for the first time. This method has added advantages over the multiple methods reported earlier being a natural remedy.
Collapse
Affiliation(s)
- Kavitha Keshava Navada
- Biological Sciences, Poornaprajna Institute of Scientific Research, Bidalur post, Devanahalli, Bengaluru Rural, 562110, India
- Manipal Academy of Higher Education, Manipal, 576104, India
| | - Ananda Kulal
- Biological Sciences, Poornaprajna Institute of Scientific Research, Bidalur post, Devanahalli, Bengaluru Rural, 562110, India.
| |
Collapse
|
28
|
Ren H, Li H, Wang H, Huang H, Lu Z. Biodegradation of Tetrahydrofuran by the Newly Isolated Filamentous Fungus Pseudallescheria boydii ZM01. Microorganisms 2020; 8:microorganisms8081190. [PMID: 32764240 PMCID: PMC7464125 DOI: 10.3390/microorganisms8081190] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/02/2020] [Accepted: 08/03/2020] [Indexed: 11/16/2022] Open
Abstract
Tetrahydrofuran (THF) is widely used as a precursor for polymer syntheses and a versatile solvent in industries. THF is an environmental hazard and carcinogenic to humans. In the present study, a new THF-degrading filamentous fungus, Pseudallescheria boydii ZM01, was isolated and characterized. Strain ZM01 can tolerate a maximum THF concentration of 260 mM and can completely degrade 5 mM THF in 48 h, with a maximum THF degradation rate of 133.40 mg THF h−1 g−1 dry weight. Growth inhibition was not observed when the initial THF concentration was below 150 mM, and the maximum THF degradation rate was still maintained at 118.21 mg THF h−1 g−1 dry weight at 50 mM THF, indicating the great potential of this strain to degrade THF at high concentrations. The initial key metabolic intermediate 2-hydroxytetrahydrofuran was detected and identified by gas chromatography (GC) analyses for the first time during the THF degradation process. Analyses of the effects of initial pH, incubation temperature, and heavy metal ions on THF degradation revealed that strain ZM01 can degrade THF under a relatively wide range of conditions and has good degradation ability under low pH and Cu2+ stress, suggesting its adaptability and applicability for industrial wastewater treatment.
Collapse
|
29
|
Effects of Additional Carbon Sources in the Biodegradation of 1,4-Dioxane by a Mixed Culture. WATER 2020. [DOI: 10.3390/w12061718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A mixed culture utilizing 1,4-dioxane as a sole carbon and energy source was obtained from the activated sludge at a textile wastewater treatment plant. The biodegradation of 1,4-dioxane was characterized by a model based on the Monod equation. The effects of the presence of easily degradable carbon sources other than 1,4-dioxane were investigated using dextrose. Structural analogs commonly found in 1,4-dioxane-containing wastewater such as tetrahydrofuran (THF), 2-methyl-1,3-dioxolane, and 1,4-dioxene were also evaluated for their potential effects on 1,4-dioxane biodegradation. The presence of dextrose did not show any synergetic or antagonistic effects on 1,4-dioxane biodegradation, while the structural analogs showed significant competitive inhibition effects. The inhibitory effects were relatively strong with heptagonal cyclic ethers such as THF and 2-methyl-1,3-dioxolane, and mild with hexagonal cyclic ethers such as 1,4-dioxene. It was also shown that the treatment of 1,4-dioxane in the raw textile wastewater required 170% more time to remove 1,4-dioxane due to the co-presence of 2-methyl-1,3-dioxolane, and the extent of delay depended on the initial concentration of 1,3-doxolane.
Collapse
|
30
|
Woiski C, Dobslaw D, Engesser KH. Isolation and characterization of 2-butoxyethanol degrading bacterial strains. Biodegradation 2020; 31:153-169. [PMID: 32356147 PMCID: PMC7299911 DOI: 10.1007/s10532-020-09900-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 04/10/2020] [Indexed: 10/26/2022]
Abstract
A total of 11 bacterial strains capable of completely degrading 2-butoxyethanol (2-BE) were isolated from forest soil, a biotrickling filter, a bioscrubber, and activated sludge, and identified by 16S rRNA gene sequence analysis. Eight of these strains belong to the genus Pseudomonas; the remaining three strains are Hydrogenophaga pseudoflava BOE3, Gordonia terrae BOE5, and Cupriavidus oxalaticus BOE300. In addition to 2-BE, all isolated strains were able to grow on 2-ethoxyethanol and 2-propoxyethanol, ethanol, n-hexanol, ethyl acetate, 2-butoxyacetic acid (2-BAA), glyoxylic acid, and n-butanol. Apart from the only gram-positive strain isolated, BOE5, none of the strains were able to grow on the nonpolar ethers diethyl ether, di-n-butyl ether, n-butyl vinyl ether, and dibenzyl ether, as well as on 1-butoxy-2-propanol. Strains H. pseudoflava BOE3 and two of the isolated pseudomonads, Pseudomonas putida BOE100 and P. vancouverensis BOE200, were studied in more detail. The maximum growth rates of strains BOE3, BOE100, and BOE200 at 30 °C were 0.204 h-1 at 4 mM, 0.645 h-1 at 5 mM, and 0.395 h-1 at 6 mM 2-BE, respectively. 2-BAA, n-butanol, and butanoic acid were detected as potential metabolites during the degradation of 2-BE. These findings indicate that the degradation of 2-BE by the isolated gram-negative strains proceeds via oxidation to 2-BAA with subsequent cleavage of the ether bond yielding glyoxylate and n-butanol. Since Gordonia terrae BOE5 was the only strain able to degrade nonpolar ethers like diethyl ether, the degradation pathway of 2-BE may be different for this strain.
Collapse
Affiliation(s)
- Christine Woiski
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany.
| | - Daniel Dobslaw
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| | - Karl-Heinrich Engesser
- Department of Biological Waste Air Purification, Institute for Sanitary Engineering, Water Quality and Solid Waste Management, University of Stuttgart, Bandtaele 2, 70569, Stuttgart, Germany
| |
Collapse
|
31
|
Xiong Y, Mason OU, Lowe A, Zhang Z, Zhou C, Chen G, Villalonga MJ, Tang Y. Investigating promising substrates for promoting 1,4-dioxane biodegradation: effects of ethane and tetrahydrofuran on microbial consortia. Biodegradation 2020; 31:171-182. [PMID: 32361902 DOI: 10.1007/s10532-020-09901-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 04/16/2020] [Indexed: 12/12/2022]
Abstract
Cometabolic biodegradation of 1,4-dioxane (dioxane) in the presence of primary substrates is a promising strategy for treating dioxane at environmentally relevant concentrations. Seven aqueous amendments (i.e., tetrahydrofuran (THF), butanone, acetone, 1-butanol, 2-butanol, phenol and acetate) and five gaseous amendments (i.e., C1-C4 alkanes and ethylene) were evaluated as the primary substrates for dioxane degradation by mixed microbial consortia. The aqueous amendments were tested in microcosm bottles and the gaseous amendments were tested in a continuous-flow membrane biofilm reactor with hollow fibers pressurized by the gaseous amendments. Ethane was found to be the most effective gaseous substrate and THF was the only aqueous substrate that promoted dioxane degradation. A diverse microbial community consisting of several putative dioxane degraders-Mycobacterium, Flavobacterium and Bradyrhizobiaceae-were enriched in the presence of ethane. This is the first study showing that ethane was the most effective substrate among the short-chain alkanes and it promoted dioxane degradation by enriching dioxane-degraders that did not harbor the well-known dioxane/tetrahydrofuran monooxygenase.
Collapse
Affiliation(s)
- Yi Xiong
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Olivia U Mason
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Ashlee Lowe
- Department of Earth, Ocean and Atmospheric Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Zhiming Zhang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Chao Zhou
- Geosyntec Consultants Inc., Huntington Beach, CA, 92648, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA
| | - Michael J Villalonga
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, FL, 32310, USA.
| |
Collapse
|
32
|
Ramalingam V, Cupples AM. Anaerobic 1,4-dioxane biodegradation and microbial community analysis in microcosms inoculated with soils or sediments and different electron acceptors. Appl Microbiol Biotechnol 2020; 104:4155-4170. [DOI: 10.1007/s00253-020-10512-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/17/2020] [Accepted: 02/28/2020] [Indexed: 11/29/2022]
|
33
|
Enrichment of novel Actinomycetales and the detection of monooxygenases during aerobic 1,4-dioxane biodegradation with uncontaminated and contaminated inocula. Appl Microbiol Biotechnol 2020; 104:2255-2269. [DOI: 10.1007/s00253-020-10376-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/22/2019] [Accepted: 01/14/2020] [Indexed: 02/06/2023]
|
34
|
Draft Genome Sequence of Rhodococcus aetherivorans JCM 14343 T, a Bacterium Capable of Degrading Recalcitrant Noncyclic and Cyclic Ethers. Microbiol Resour Announc 2020; 9:9/3/e01345-19. [PMID: 31948959 PMCID: PMC6965577 DOI: 10.1128/mra.01345-19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the draft genome sequence of Rhodococcus aetherivorans JCM 14343T, which possesses the versatile ability to degrade recalcitrant noncyclic and cyclic ether compounds. The 4.2-Mbp genome of this bacterium contains alkane hydroxylase and propane monooxygenase genes involved in the degradation of noncyclic and cyclic ethers, respectively. Here, we report the draft genome sequence of Rhodococcus aetherivorans JCM 14343T, which possesses the versatile ability to degrade recalcitrant noncyclic and cyclic ether compounds. The 4.2-Mbp genome of this bacterium contains alkane hydroxylase and propane monooxygenase genes involved in the degradation of noncyclic and cyclic ethers, respectively.
Collapse
|
35
|
Inoue D, Tsunoda T, Sawada K, Yamamoto N, Sei K, Ike M. Stimulatory and inhibitory effects of metals on 1,4-dioxane degradation by four different 1,4-dioxane-degrading bacteria. CHEMOSPHERE 2020; 238:124606. [PMID: 31446278 DOI: 10.1016/j.chemosphere.2019.124606] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 07/26/2019] [Accepted: 08/16/2019] [Indexed: 06/10/2023]
Abstract
This study evaluates the effects of various metals on 1,4-dioxane degradation by the following four bacteria: Pseudonocardia sp. D17; Pseudonocardia sp. N23; Mycobacterium sp. D6; and Rhodococcus aetherivorans JCM 14343. Eight transition metals [Co(II), Cu(II), Fe(II), Fe(III), Mn(II), Mo(VI), Ni(II), and Zn(II)] were used as the test metals. Results revealed, for the first time, that metals had not only inhibitory but also stimulatory effects on 1,4-dioxane biodegradation. Cu(II) had the most severe inhibitory effects on 1,4-dioxane degradation by all of the test strains, with significant inhibition at concentrations as low as 0.01-0.1 mg/L. This inhibition was probably caused by cellular toxicity at higher concentrations, and by inhibition of degradative enzymes at lower concentrations. In contrast, Fe(III) enhanced 1,4-dioxane degradation by Mycobacterium sp. D6 and R. aetherivorans JCM 14343 the most, while degradation by the two Pseudonocardia strains was stimulated most notably in the presence of Mn(II), even at concentrations as low as 0.001 mg/L. Enhanced degradation is likely caused by the stimulation of soluble di-iron monooxygenases (SDIMOs) involved in the initial oxidation of 1,4-dioxane. Differences in the stimulatory effects of the tested metals were likely associated with the particular SDIMO types in the test strains.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Kazuko Sawada
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan; Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
36
|
Tusher TR, Shimizu T, Inoue C, Chien MF. Enrichment and Analysis of Stable 1,4-dioxane-Degrading Microbial Consortia Consisting of Novel Dioxane-Degraders. Microorganisms 2019; 8:microorganisms8010050. [PMID: 31881778 PMCID: PMC7022751 DOI: 10.3390/microorganisms8010050] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/17/2019] [Accepted: 12/21/2019] [Indexed: 12/11/2022] Open
Abstract
Biodegradation of 1,4-dioxane, a water contaminant of emerging concern, has drawn substantial attention over the last two decades. A number of dioxane-degraders have been identified, though many of them are unable to metabolically utilize 1,4-dioxane. Moreover, it is considered more preferable to use microbial consortia rather than the pure strains, especially in conventional bioreactors for industrial wastewater treatment. In the present study, a stable 1,4-dioxane-degrading microbial consortium was enriched, namely 112, from industrial wastewater by nitrate mineral salt medium (NMSM). The consortium 112 is capable of utilizing 1,4-dioxane as a sole carbon and energy source, and can completely degrade 1,4-dioxane up to 100 mg/L. From the consortium 112, two 1,4-dioxane-degrading bacterial strains were isolated and identified, in which the Variovorax sp. TS13 was found to be a novel 1,4-dioxane-degrader that can utilize 100 mg/L of 1,4-dioxane. The efficacy of the consortium 112 was increased significantly when we cultured the consortium with mineral salt medium (MSM). The new consortium, N112, could utilize 1,4-dioxane at a rate of 1.67 mg/L·h. The results of the ribosomal RNA intergenic spacer analysis (RISA) depicted that changes in the microbial community structure of consortium 112 was the reason behind the improved degradation efficiency of consortium N112, which was exhibited as a stable and effective microbial consortium with a high potential for bioremediation of the dioxane-impacted sites and contaminated industrial wastewater.
Collapse
|
37
|
Carbon sources that enable enrichment of 1,4-dioxane-degrading bacteria in landfill leachate. Biodegradation 2019; 31:23-34. [PMID: 31520343 DOI: 10.1007/s10532-019-09891-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
1,4-Dioxane (DX) is a recalcitrant cyclic ether that has gained attention as an emerging pollutant in the aquatic environment. Enrichment of indigenous DX-degrading bacteria, which are considered to be minor populations even in DX-impacted environments, is the key for efficient biological DX removal. Therefore, this study aimed to explore carbon sources applicable for the enrichment of DX-degrading bacteria present in landfill leachate, which is a potential source of DX pollution. Microorganisms collected from landfill leachate were cultivated on six different carbon sources (DX, tetrahydrofuran (THF), 1,3,5-trioxane (TX), ethylene glycol (EG), diethylene glycol (DEG), and 1,4-butanediol (BD)) in a sequential batch mode. Consequently, enrichment cultures cultivated on THF in addition to DX improved the DX degradation ability compared to that of the original leachate sample, while those on the other test carbon sources did not. The results indicated that THF can be an alternative carbon source to enrich DX-degrading bacteria, and that TX, EG, DEG and BD are not applicable to concentrate DX-degrading bacteria in complex microbial consortia. In addition, sequencing analyses of 16S rRNA and soluble di-iron monooxygenase (SDIMO) genes revealed notable dominance of thm/dxm genes involved in group 5 SDIMO both in DX- and THF-enrichment cultures. The analysis also showed a predominance of Pseudonocardia in THF-enrichment culture, suggesting that Pseudonocardia harboring thm/dxm genes contributes to enhanced DX degradation in THF-enrichment culture.
Collapse
|
38
|
Microbial Community Analysis Provides Insights into the Effects of Tetrahydrofuran on 1,4-Dioxane Biodegradation. Appl Environ Microbiol 2019; 85:AEM.00244-19. [PMID: 30926731 DOI: 10.1128/aem.00244-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/20/2019] [Indexed: 11/20/2022] Open
Abstract
Tetrahydrofuran (THF) is known to induce the biodegradation of 1,4-dioxane (dioxane), an emerging contaminant, but the mechanisms by which THF affects dioxane biodegradation in microbial communities are not well understood. To fill this knowledge gap, changes in the microbial community structure in microcosm experiments with synthetic medium and landfill leachate were examined over time using 16S rRNA gene amplicon sequencing and functional gene quantitative PCR assays. The overarching hypothesis being tested was that THF promoted dioxane biodegradation by increasing the abundance of dioxane-degrading bacteria in the consortium. The data revealed that in experiments with synthetic medium, the addition of THF significantly increased the abundance of Pseudonocardia, a genus with several representatives that can grow on both dioxane and THF, and of Rhodococ cus ruber, a species that can use THF as the primary growth substrate while cometabolizing dioxane. However, in similar experiments with landfill leachate, only R. ruber was significantly enriched. When the THF concentration was higher than the dioxane concentration, THF competitively inhibited dioxane degradation since dioxane degradation was negligible, while the dioxane-degrading bacteria and the corresponding THF/dioxane monooxygenase gene copies increased by a few orders of magnitude.IMPORTANCE Widespread in groundwater and carcinogenic to humans, 1,4-dioxane (dioxane) is attracting significant attention in recent years. Advanced oxidation processes can effectively remove dioxane but require high energy consumption and operation costs. Biological removal of dioxane is of particular interest due to the ability of some bacteria to mineralize dioxane at a low energy cost. Although dioxane is generally considered recalcitrant to biodegradation, more than 20 types of bacteria can degrade dioxane as the sole electron donor substrate or the secondary electron donor substrate. In the latter case, tetrahydrofuran (THF) is commonly studied as the primary electron donor substrate. Previous work has shown that THF promotes dioxane degradation at a low THF concentration but inhibits dioxane degradation at a high THF concentration. Our work expanded on the previous work by mechanically examining the effects of THF on dioxane degradation in a microbial community context.
Collapse
|
39
|
Anteneh YS, Franco CMM. Whole Cell Actinobacteria as Biocatalysts. Front Microbiol 2019; 10:77. [PMID: 30833932 PMCID: PMC6387938 DOI: 10.3389/fmicb.2019.00077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/15/2019] [Indexed: 12/25/2022] Open
Abstract
Production of fuels, therapeutic drugs, chemicals, and biomaterials using sustainable biological processes have received renewed attention due to increasing environmental concerns. Despite having high industrial output, most of the current chemical processes are associated with environmentally undesirable by-products which escalate the cost of downstream processing. Compared to chemical processes, whole cell biocatalysts offer several advantages including high selectivity, catalytic efficiency, milder operational conditions and low impact on the environment, making this approach the current choice for synthesis and manufacturing of different industrial products. In this review, we present the application of whole cell actinobacteria for the synthesis of biologically active compounds, biofuel production and conversion of harmful compounds to less toxic by-products. Actinobacteria alone are responsible for the production of nearly half of the documented biologically active metabolites and many enzymes; with the involvement of various species of whole cell actinobacteria such as Rhodococcus, Streptomyces, Nocardia and Corynebacterium for the production of useful industrial commodities.
Collapse
Affiliation(s)
- Yitayal Shiferaw Anteneh
- College of Medicine and Public Health, Medical Biotechnology, Flinders University, Bedford Park, SA, Australia
- Department of Medical Microbiology, College of Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | | |
Collapse
|
40
|
Identification of active and taxonomically diverse 1,4-dioxane degraders in a full-scale activated sludge system by high-sensitivity stable isotope probing. ISME JOURNAL 2018; 12:2376-2388. [PMID: 29899516 PMCID: PMC6155002 DOI: 10.1038/s41396-018-0201-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/06/2018] [Accepted: 05/09/2018] [Indexed: 11/10/2022]
Abstract
1,4-Dioxane is one of the most common and persistent artificial pollutants in petrochemical industrial wastewaters and chlorinated solvent groundwater plumes. Despite its possible biological treatment in natural environments, the identity and dynamics of the microorganisms involved are largely unknown. Here, we identified active and diverse 1,4-dioxane-degrading microorganisms from activated sludge by high-sensitivity stable isotope probing of rRNA. By rigorously analyzing 16S rRNA molecules in RNA density fractions of 13C-labeled and unlabeled 1,4-dioxane treatments, we discovered 10 significantly 13C-incorporating microbial species from the complex microbial community. 16S rRNA expression assays revealed that 9 of the 10 species, including the well-known degrader Pseudonocardia dioxanivorans, an ammonia-oxidizing bacterium and phylogenetically novel bacteria, increased their metabolic activities shortly after exposure to 1,4-dioxane. Moreover, high-resolution monitoring showed that, during a single year of operation of the full-scale activated sludge system, the nine identified species exhibited yearly averaged relative abundances of 0.001–1.523%, and yet showed different responses to changes in the 1,4-dioxane removal efficiency. Hence, the co-existence and individually distinct dynamics of various 1,4-dioxane-degrading microorganisms, including hitherto unidentified species, played pivotal roles in the maintenance of the biological system removing the recalcitrant pollutant.
Collapse
|
41
|
Inoue D, Tsunoda T, Yamamoto N, Ike M, Sei K. 1,4-Dioxane degradation characteristics of Rhodococcus aetherivorans JCM 14343. Biodegradation 2018; 29:301-310. [PMID: 29696449 DOI: 10.1007/s10532-018-9832-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 04/22/2018] [Indexed: 11/24/2022]
Abstract
Rhodococcus aetherivorans JCM 14343 can degrade 1,4-dioxane as a sole carbon and energy source. This study aimed to characterize this 1,4-dioxane degradation ability further, and assess the potential use of the strain for 1,4-dioxane removal in industrial wastewater. Strain JCM 14343 was able to degrade 1,4-dioxane inducibly, and its 1,4-dioxane degradation was also induced by tetrahydrofuran and 1,4-butanediol. The demonstration that 1,4-butanediol not only induced but also enhanced 1,4-dioxane degradation was a novel finding of this study. Although strain JCM 14343 appeared not to be an effective 1,4-dioxane degrader considering the maximum specific 1,4-dioxane degradation rate (0.0073 mg-dioxane/mg-protein/h), half saturation concentration (59.2 mg/L), and cell yield (0.031 mg-protein/mg-1,4-dioxane), the strain could degrade over 1100 mg/L of 1,4-dioxane and maintain its degradation activity at a wide range of temperature (5-40 °C) and pH (4-9) conditions. This suggests the usefulness of strain JCM 14343 in 1,4-dioxane treatment under acidic and cold conditions. In addition, 1,4-dioxane degradation experiments in the presence of ethylene glycol (EG) or other cyclic ethers revealed that 1,4-dioxane degradation by strain JCM 14343 was inhibited in the presence of other cyclic ethers, but not by EG, suggesting certain applicability of strain JCM 14343 for industrial wastewater treatment.
Collapse
Affiliation(s)
- Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Tsubasa Tsunoda
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| | - Norifumi Yamamoto
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa, 245-0051, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Kazunari Sei
- Environment and Medical Sciences Course, Graduate School of Medical Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan.,Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa, 252-0373, Japan
| |
Collapse
|
42
|
Li M, Yang Y, He Y, Mathieu J, Yu C, Li Q, Alvarez PJJ. Detection and cell sorting of Pseudonocardia species by fluorescence in situ hybridization and flow cytometry using 16S rRNA-targeted oligonucleotide probes. Appl Microbiol Biotechnol 2018; 102:3375-3386. [DOI: 10.1007/s00253-018-8801-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 12/19/2017] [Accepted: 01/21/2018] [Indexed: 10/18/2022]
|
43
|
Yamamoto N, Saito Y, Inoue D, Sei K, Ike M. Characterization of newly isolated Pseudonocardia sp. N23 with high 1,4-dioxane-degrading ability. J Biosci Bioeng 2018; 125:552-558. [PMID: 29301721 DOI: 10.1016/j.jbiosc.2017.12.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/14/2017] [Accepted: 12/08/2017] [Indexed: 10/18/2022]
Abstract
This study was conducted to elucidate the 1,4-dioxane degradation characteristics of a newly isolated 1,4-dioxane-degrading bacterial strain and evaluate the applicability of the strain to biological 1,4-dioxane removal from wastewater. A bacterial strain (designated strain N23) capable of degrading 1,4-dioxane as the sole carbon and energy source was isolated from an enrichment culture prepared from 1,4-dioxane-contaminated groundwater. Strain N23 was phylogenetically identified as belonging to the genus Pseudonocardia, based on 16S rRNA gene sequencing. 1,4-Dioxane degradation experiments revealed that strain N23 is capable of constitutive 1,4-dioxane degradation. Further, this strain exhibited the highest specific 1,4-dioxane degradation rate of 0.230 mg-1,4-dioxane (mg-protein)-1 h-1 among 1,4-dioxane-degrading bacteria with constitutively expressed degrading enzymes reported to date. In addition, strain N23 was shown to degrade up to 1100 mg L-1 of 1,4-dioxane without significant inhibition, and to maintain a high level of 1,4-dioxane degradation activity under a wide pH (pH 3.8-8.2) and temperature (20-35 °C) range. In particular, the specific 1,4-dioxane degradation rate, even at pH 3.8, was 83% of the highest rate at pH 7.0. In addition, strain N23 was capable of utilizing ethylene glycol and diethylene glycol, which are both considered to be present in 1,4-dioxane-containing industrial wastewater, as the sole carbon source. The present results indicate that strain N23 exhibits the potential for 1,4-dioxane removal from industrial wastewater.
Collapse
Affiliation(s)
- Norifumi Yamamoto
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa 245-0051, Japan; Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Yuji Saito
- Technology Center, Taisei Corporation, 344-1 Nase-cho, Totsuka-ku, Yokohama, Kanagawa 245-0051, Japan
| | - Daisuke Inoue
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kazunari Sei
- Department of Health Science, Kitasato University, 1-15-1 Kitasato, Sagamihara-Minami, Kanagawa 252-0373, Japan
| | - Michihiko Ike
- Division of Sustainable Energy and Environmental Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|