1
|
Zhang Y, Sun X, Wang F, Su T, Yang S, Ai S, Bian D, Huo H. Study on the effect and regularity of plating parts cleaning wastewater by enhanced aerobic process with high-density bacterial flora. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 357:120653. [PMID: 38574704 DOI: 10.1016/j.jenvman.2024.120653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/16/2024] [Accepted: 03/10/2024] [Indexed: 04/06/2024]
Abstract
In this research, we established an enhanced aerobic biological method utilizing a high-density bacterial flora for the treatment of low-biochemical plating parts washing wastewater. The elucidation of pollutant removal mechanisms was achieved through a comprehensive analysis of changes in sludge characteristics and bacterial community structure. The results demonstrated that throughout the operational period, the organic load remained stable within the range of 0.01-0.02 kgCOD/kgMLSS·d, the BOD5/COD ratio increased from 0.004 mg/L to 0.33 mg/L, and the average removal rates for key pollutants, including COD, NH4+-N, and TN, reached 98.13%, 99.86%, and 98.09%. MLSS concentration remained at 7627 mg/L, indicating a high-density flora. Notably, Proteobacteria, Bacteroidota, and Acidobacteriota, which have the ability to degrade large organic molecules, had been found in the system. This study affirms the efficacy of the intensive aerobic biological method for treating low-biochemical plating washing wastewater while ensuring system stability.
Collapse
Affiliation(s)
- Ying Zhang
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China
| | - Xuejian Sun
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China; Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China
| | - Fan Wang
- Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China
| | - Ting Su
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China
| | - Siwen Yang
- Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China
| | - Shengshu Ai
- Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China
| | - Dejun Bian
- Key Laboratory of Urban Wastewater Treatment in Jilin Province, Changchun College of Engineering, Changchun, 130012, Jilin, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, Changchun, Jilin, 130117, China.
| |
Collapse
|
2
|
Qian Y, Han W, Zhou F, Ji B, Zhang H, Zhang K. Effects of Pressurized Aeration on the Biodegradation of Short-Chain Chlorinated Paraffins by Escherichia coli Strain 2. MEMBRANES 2022; 12:634. [PMID: 35736341 PMCID: PMC9227625 DOI: 10.3390/membranes12060634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022]
Abstract
Short-chain chlorinated paraffins (SCCPs) were defined as persistent organic pollutants in 2017, and they can migrate and transform in the environment, accumulate in organisms, and amplify through the food chain. Although they pose a serious threat to environmental safety and human health, there are few papers on their removal. The current SCCP removal methods are expensive, require severe operating conditions, involve time-consuming biological treatment, and have poor removal specificities. Therefore, it is important to seek efficient methods to remove SCCPs. In this paper, a pressurized reactor was introduced, and the removal performance of SCCPs by Escherichia coli strain 2 was investigated. The results indicated that moderate pure oxygen pressurization promoted bacterial growth, but when it exceeded 0.15 MPa, the bacterial growth was severely inhibited. When the concentration of SCCPs was 20 mg/L, the removal rate of SCCPs was 85.61% under 0.15 MPa pure oxygen pressurization for 7 days, which was 25% higher than at atmospheric pressure (68.83%). In contrast, the removal rate was only 69.28% under 0.15 MPa air pressure. As the pressure continued to increase, the removal rate of SCCPs decreased significantly. The total amount of extracellular polymeric substances (EPS) increased significantly upon increasing the pressure, and the amount of tightly bound EPS (TB-EPS) was higher than that of loosely bound EPS (LB-EPS). The pressure mainly promoted the secretion of proteins in LB-EPS. Furthermore, an appropriate pure oxygen pressure of 0.15 MPa improved the dehydrogenase activity. The gas chromatography-mass spectrometry (GC-MS) results indicated that the degradation pathway possibly involved the cleavage of the C-Cl bond in SCCPs, which produced Cl-, followed by C-C bond breaking. This process degraded long-chain alkanes into short-chain alkanes. Moreover, the main degradation products detected were 2,4-dimethylheptane (C9H20), 2,5-dimethylheptane (C9H20), and 3,3-dimethylhexane (C8H18).
Collapse
Affiliation(s)
- Yongxing Qian
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wanling Han
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Fuhai Zhou
- Zhejiang Haiyi Environmental Protection Equipment Engineering Co., Ltd., Quzhou 324000, China;
| | - Bixiao Ji
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Huining Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Kefeng Zhang
- School of Civil Engineering and Architecture, NingboTech University, Ningbo 315000, China; (Y.Q.); (W.H.); (B.J.); (K.Z.)
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| |
Collapse
|
3
|
Bian D, Nie Z, Wang F, Ai S, Zhu S, Guo H. Micro-pressure swirl reactor (MPSR) for efficient COD and nitrogen removal of high-concentration wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:1795-1807. [PMID: 33201844 DOI: 10.2166/wst.2020.454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A micro-pressure swirl reactor (MPSR) was developed for carbon and nitrogen removal of wastewater, in which dissolved oxygen (DO) gradient and internal circulation could be created by setting the aerators along one side of the reactor, and micro-pressure could be realized by sealing most of the top cap and increasing the outlet water level. In this study, velocity and DO distribution in the reactor was measured, removal performance treating high-concentration wastewater was investigated, and the main functional microorganisms were analyzed. The experiment results indicated that there was stable swirl flow and spatial DO gradient in MPSR. Operated in sequencing batch reactor mode, distinct biological environments spatially and temporally were created. Under the average influent condition of chemical oxygen demand (COD) concentration of 2,884 mg/L and total nitrogen (TN) of 184 mg/L, COD removal efficiency and removal loading was 98% and 1.8 kgCOD/(m3·d) respectively, and TN removal efficiency and removal loading reached up to 90% and 0.11 kgTN/(m3·d) respectively. With efficient utilization of DO and simpler configuration for simultaneous nitrification and denitrification, the MPSR has the potential of treating high-concentration wastewater at lower cost.
Collapse
Affiliation(s)
- Dejun Bian
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Zebing Nie
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Fan Wang
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail:
| | - Shengshu Ai
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail:
| | - Suiyi Zhu
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; Science and Technology Innovation Center for Municipal Wastewater Treatment and Water Quality Protection, Northeast Normal University, Changchun 130117, China
| | - Haiyan Guo
- Key Laboratory of Urban Sewage Treatment of Jilin Province, Changchun Institute of Technology, Changchun 130012, China E-mail: ; College of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian 116028, China
| |
Collapse
|
4
|
Study on Aeration Optimization and Sewage Treatment Efficiency of a Novel Micro-Pressure Swirl Reactor (MPSR). WATER 2020. [DOI: 10.3390/w12030890] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
This study developed a new type of micro-pressure swirl reactor (MPSR) for treating rural domestic sewage with variable water volume in northern China. The transformation of a traditional aeration tank to MPSR was mainly divided into three steps. Firstly, the aeration device was installed on one side of the aeration tank. Secondly, most of the top cover plate was sealed. Finally, the liquid level-lifting zone was set to achieve micro-pressure. The study measured the flow velocity and dissolved oxygen (DO) distribution in the main reaction zone of MPSR, studied the effects of MPSR sewage treatment in continuous operation mode and sequential batch operation mode, and analyzed the main microbial species. The experimental results showed that a stable circular circle flow and a spatial DO gradient in MPSR were formed when the aeration rate of MPSR was 0.2 m3/h. Through the MPSR sewage treatment experiment in two operation modes, it could meet the current requirements of rural environmental pollution controlled in China. Analysis of the types of microorganisms showed that microorganisms with different functions gathered in different zones of the MPSR due to the different dissolved oxygen environment and water flow environment, which further improved the ability of MPSR to simultaneously remove nitrogen and phosphorus.
Collapse
|
5
|
Xu D, Ji H, Ren H, Geng J, Li K, Xu K. Inhibition effect of magnetic field on nitrous oxide emission from sequencing batch reactor treating domestic wastewater at low temperature. J Environ Sci (China) 2020; 87:205-212. [PMID: 31791493 DOI: 10.1016/j.jes.2019.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
This study aims to investigate the effect of a magnetic field on nitrous oxide (N2O) emission from a sequencing batch reactor treating low-strength domestic wastewater at low temperature (10°C). After running for 124 days in parallel, results indicated that the conversion rate of N2O for a magnetic field-sequencing batch reactor (MF-SBR) decreased by 34.3% compared to that of a conventional SBR (C-SBR). Meanwhile, the removal efficiencies for total nitrogen (TN) and ammonia nitrogen (NH4-N) of the MF-SBR were 22.4% and 39.5% higher than those of the C-SBR. High-throughput sequencing revealed that the abundances of AOB (Nitrosomonas), NOB (Nitrospira) and denitrifiers (Zoogloea), which could reduce N2O to N2, were promoted significantly in the MF-SBR. Enzyme activities (Nir) and gene abundances (nosZ nirS and nirK) for denitrification in the MF-SBR were also notably higher compared to C-SBR. Our study shows that application of a magnetic field is a useful approach for inhibiting the generation of N2O and promoting the nitrogen removal efficiency by affecting the microbial characteristics of sludge in an SBR treating domestic wastewater at low temperature.
Collapse
Affiliation(s)
- Dan Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongmin Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jinju Geng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Kan Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Ke Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
6
|
Short-Term Effects of Tourmaline on Nitrogen Removals and Microbial Communities in a Sequencing Batch Reactor at Low Temperatures. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15061280. [PMID: 29914192 PMCID: PMC6024927 DOI: 10.3390/ijerph15061280] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/01/2018] [Accepted: 06/14/2018] [Indexed: 01/30/2023]
Abstract
Tourmaline is a ring borosilicate with unique pyro-electricity and piezoelectricity values. Non-gem tourmaline is usually used as an environmental material. The short-term effects of ultrafine tourmaline particles on nitrogen removal performs microbial population dynamics. Key functional species in a sequencing batch reactor were investigated at 9 ± 1 °C. The investigation results showed that 1 g·L−1 ultrafine tourmaline particles could resist the effect of temperature shock on the metabolism of NH4+-N and were beneficial to the restoration of the metabolism capacity of NH4+-N. 1 g·L−1 ultrafine tourmaline particles, which increased the oxidation rate of NH4+-N in the aerobic phase, the formation rate of NO3−-N in the aerobic phase, and the denitrification rate in the hypoxia phase at low temperatures. However, the community richness or diversities were not changed after short-term exposure to 1 g·L−1 ultrafine tourmaline particles at low temperatures and 1 g·L−1 ultrafine tourmaline particles could not change the relative abundances of functional microbes except nitrite oxidizing bacteria.
Collapse
|