1
|
Liu Y, Fu J, Wu L, Kümmel S, Nijenhuis I, Richnow HH. Characterization of Hexachlorocyclohexane Isomer Dehydrochlorination by LinA1 and LinA2 Using Multi-element Compound-Specific Stable Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16848-16856. [PMID: 36397208 DOI: 10.1021/acs.est.2c05334] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Dehydrochlorination is one of the main (thus far discovered) processes for aerobic microbial transformation of hexachlorocyclohexane (HCH) which is mainly catalyzed by LinA enzymes. In order to gain a better understanding of the reaction mechanisms, multi-element compound-specific stable isotope analysis was applied for evaluating α- and γ-HCH transformations catalyzed by LinA1 and LinA2 enzymes. The isotopic fractionation (εE) values for particular elements of (+)α-HCH (εC = -10.8 ± 1.0‰, εCl = -4.2 ± 0.5‰, εH = -154 ± 16‰) were distinct from the values for (-)α-HCH (εC = -4.1 ± 0.7‰, εCl = -1.6 ± 0.2‰, εH = -68 ± 10‰), whereas the dual-isotope fractionation patterns were almost identical for both enantiomers (ΛC-Cl = 2.4 ± 0.4 and 2.5 ± 0.2, ΛH-C = 12.9 ± 2.4 and 14.9 ± 1.1). The εE of γ-HCH transformation by LinA1 and LinA2 were -7.8 ± 1.0‰ and -7.5 ± 0.8‰ (εC), -2.7 ± 0.3‰ and -2.5 ± 0.4‰ (εCl), -170 ± 25‰ and -150 ± 13‰ (εH), respectively. Similar ΛC-Cl values (2.7 ± 0.2 and 2.9 ± 0.2) were observed as well as similar ΛH-C values (20.1 ± 2.0 and 18.4 ± 1.9), indicating a similar reaction mechanism by both enzymes during γ-HCH transformation. This is the first data set on 3D isotope fractionation of α- and γ-HCH enzymatic dehydrochlorination, which gave a more precise characterization of the bond cleavages, highlighting the potential of multi-element compound-specific stable isotope analysis to characterize different transformation processes (e.g., dehydrochlorination and reductive dehalogenation).
Collapse
Affiliation(s)
- Yaqing Liu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Daxue Road 100, Nanning530004, P.R. China
| | - Juan Fu
- College of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Daxue Road 100, Nanning530004, P.R. China
| | - Langping Wu
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
- Ecometrix Incorporated, 6800 Campobello Road, Mississauga, OntarioL5N 2L8, Canada
| | - Steffen Kümmel
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
| | - Hans H Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, Permoserstraße 15, Leipzig04318, Germany
- Isodetect, Deutscher Platz 5b, Leipzig04103, Germany
| |
Collapse
|
2
|
Heeb NV, Hubeli J, Fleischmann T, Lienemann P, Nayyar N, Lal R, Kohler HPE. Transformation of ε-HBCD with the Sphingobium Indicum enzymes LinA1, LinA2 and LinATM, a triple mutant of LinA2. CHEMOSPHERE 2021; 267:129217. [PMID: 33321275 DOI: 10.1016/j.chemosphere.2020.129217] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Hexabromocyclododecanes (HBCDs) were used as flame-retardants until their ban in 2013. Among the 16 stereoisomers known, ε-HBCD has the highest symmetry. This makes ε-HBCD an interesting substrate to study the selectivity of biotransformations. We expressed three LinA dehydrohalogenase enzymes in E. coli bacteria, two wild-type, originating from Sphingobium indicum B90A bacteria and LinATM, a triple mutant of LinA2, with mutations of L96C, F113Y and T133 M. These enzymes are involved in the hexachlorocyclohexane (HCH) metabolism, specifically of the insecticide γ-HCH (Lindane). We studied the reactivity of those eight HBCD stereoisomers found in technical HBCD. Furthermore, we compared kinetics and selectivity of these LinA variants with respect to ε-HBCD. LC-MS data indicate that all enzymes converted ε-HBCD to pentabromocyclododecenes (PBCDens). Transformations followed Michaelis-Menten kinetics. Rate constants kcat and enzyme specificities kcat/KM indicate that ε-HBCD conversion was fastest and most specific with LinA2. Only one PBCDen stereoisomer was formed by LinA2, while LinA1 and LinATM produced mixtures of two PBCDE enantiomers at three times lower rates than LinA2. In analogy to the biotransformation of (-)β-HBCD, with selective conversion of dibromides in R-S-configuration, we assume that 1E,5S,6R,9S,10R-PBCDen is the ε-HBCD transformation product from LinA2. Implementing three amino acids of the LinA1 substrate-binding site into LinA2 resulted in a triple mutant with similar kinetics and product specificity like LinA1. Thus, point-directed mutagenesis is an interesting tool to modify the substrate- and product-specificity of LinA enzymes and enlarge their scope to metabolize other halogenated persistent organic pollutants regulated under the Stockholm Convention.
Collapse
Affiliation(s)
- Norbert V Heeb
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland.
| | - Jasmin Hubeli
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Advanced Analytical Technologies, Überlandstrasse 129, CH-8600, Dübendorf, Switzerland; ZHAW, Zurich University of Applied Sciences, Institute of Chemistry and Biological Chemistry, Reidbach, CH-8820, Wädenswil, Switzerland; Current Address: Cantonal Pharmacy Zürich, Südstrasse 3, CH-8952, Schlieren, Switzerland
| | - Thomas Fleischmann
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| | - Peter Lienemann
- ZHAW, Zurich University of Applied Sciences, Institute of Chemistry and Biological Chemistry, Reidbach, CH-8820, Wädenswil, Switzerland
| | - Namita Nayyar
- Sri Venkateswara College, University of Delhi, Delhi, 1110021, India
| | - Rup Lal
- The Energy and Resources Institute, India Habitat Center, New Delhi, Delhi, 110003, India
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Überlandstrasse 133, CH-8600, Dübendorf, Switzerland
| |
Collapse
|
3
|
Sowińska A, Vasquez L, Żaczek S, Manna RN, Tuñón I, Dybala-Defratyka A. Seeking the Source of Catalytic Efficiency of Lindane Dehydrochlorinase, LinA. J Phys Chem B 2020; 124:10353-10364. [PMID: 33146535 PMCID: PMC7681783 DOI: 10.1021/acs.jpcb.0c08976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Herein we present the results of an in-depth simulation study of LinA and its two variants. In our analysis, we combined the exploration of protein conformational dynamics with and without bound substrates (hexachlorocyclohexane (HCH) isomers) performed using molecular dynamics simulation followed by the extraction of the most frequently visited conformations and their characteristics with a detailed description of the interactions taking place in the active site between the respective HCH molecule and the first shell residues by using symmetry-adapted perturbation theory (SAPT) calculations. A detailed investigation of the conformational space of LinA substates has been accompanied by description of enzymatic catalytic steps carried out using a hybrid quantum mechanics/molecular mechanics (QM/MM) potential along with the computation of the potential of mean force (PMF) to estimate the free energy barriers for the studied transformations: dehydrochlorination of γ-, (-)-α-, and (+)-α-HCH by LinA-type I and -type II variants. The applied combination of computational techniques allowed us not only to characterize two LinA types but also to point to the most important differences between them and link their features to catalytic efficiency each of them possesses toward the respective ligand. More importantly it has been demonstrated that type I protein is more mobile, its active site has a larger volume, and the dehydrochlorination products are stabilized more strongly than in the case of type II enzyme, due to differences in the residues present in the active sites. Additionally, interaction energy calculations revealed very interesting patterns not predicted before but having the potential to be utilized in any attempts of improving LinA catalytic efficiency. On the basis of all these observations, LinA-type I protein seems to be more preorganized for the dehydrochlorination reaction it catalyzes than the type II variant.
Collapse
Affiliation(s)
- Agata Sowińska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Luis Vasquez
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Szymon Żaczek
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Rabindra Nath Manna
- School Chemical Sciences, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Iñaki Tuñón
- Departamento de Quı́mica Fı́sica, Universitat de Valencia, 46100 Burjassot, Valencia Spain
| | - Agnieszka Dybala-Defratyka
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| |
Collapse
|
4
|
Kaminski MA, Sobczak A, Dziembowski A, Lipinski L. Genomic Analysis of γ-Hexachlorocyclohexane-Degrading Sphingopyxis lindanitolerans WS5A3p Strain in the Context of the Pangenome of Sphingopyxis. Genes (Basel) 2019; 10:E688. [PMID: 31500174 PMCID: PMC6771000 DOI: 10.3390/genes10090688] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 11/29/2022] Open
Abstract
Sphingopyxis inhabit diverse environmental niches, including marine, freshwater, oceans, soil and anthropogenic sites. The genus includes 20 phylogenetically distinct, valid species, but only a few with a sequenced genome. In this work, we analyzed the nearly complete genome of the newly described species, Sphingopyxislindanitolerans, and compared it to the other available Sphingopyxis genomes. The genome included 4.3 Mbp in total and consists of a circular chromosome, and two putative plasmids. Among the identified set of lin genes responsible for γ-hexachlorocyclohexane pesticide degradation, we discovered a gene coding for a new isoform of the LinA protein. The significant potential of this species in the remediation of contaminated soil is also correlated with the fact that its genome encodes a higher number of enzymes potentially involved in aromatic compound degradation than for most other Sphingopyxis strains. Additional analysis of 44 Sphingopyxis representatives provides insights into the pangenome of Sphingopyxis and revealed a core of 734 protein clusters and between four and 1667 unique proteins per genome.
Collapse
Affiliation(s)
- Michal A Kaminski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Adam Sobczak
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Leszek Lipinski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Pawinskiego 5a, 02-106 Warsaw, Poland.
- Institute of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, Pawinskiego 5a, 02-106 Warsaw, Poland.
| |
Collapse
|
5
|
Liu Y, Wu L, Kohli P, Kumar R, Stryhanyuk H, Nijenhuis I, Lal R, Richnow HH. Enantiomer and Carbon Isotope Fractionation of α-Hexachlorocyclohexane by Sphingobium indicum Strain B90A and the Corresponding Enzymes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8715-8724. [PMID: 31266304 DOI: 10.1021/acs.est.9b01233] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Chiral organic contaminants, like α-hexachlorocyclohexane (α-HCH), showed isotope fractionation and enantiomer fractionation during biodegradation. This study aims to understand the correlation between these two processes. Initial tests of α-HCH degradation by six Sphingobium strains (with different LinA variants) were conducted. Results showed variable enantiomer selectivity over the time course. In contrast, constant enantiomer selectivity was observed in experiments employing (i) cell suspensions, (ii) crude extracts, or (iii) LinA1 and LinA2 enzymes of strain B90A for α-HCH degradation in enzyme activity assay buffer. The average value of enantioselectivity (ES) were -0.45 ± 0.03 (cell suspensions), -0.60 ± 0.05 (crude extracts), and 1 (LinA1) or -1 (LinA2). The average carbon isotope enrichment factors (εc) of (+)α- and (-)α-HCH were increased from cells suspensions (-6.3 ± 0.1‰ and -2.3 ± 0.03‰) over crude extracts (-7.7 ± 0.4‰ and -3.4 ± 0.02‰) to purified enzymes (-11.1 ± 0.3‰ and -3.8 ± 0.2‰). The variability of ES and the εc were discussed based on the effect of mass transport and degradation rates. Our study demonstrates that enantiomer and isotope fractionation of α-HCH are two independent processes and both are affected by underlying reactions of individual enzymes and mass transport to a different extent.
Collapse
Affiliation(s)
- Yaqing Liu
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Langping Wu
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Puneet Kohli
- Molecular Biology Laboratory, Department of Zoology , University of Delhi , Delhi - 110007 , India
| | - Roshan Kumar
- Molecular Biology Laboratory, Department of Zoology , University of Delhi , Delhi - 110007 , India
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Ivonne Nijenhuis
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| | - Rup Lal
- Molecular Biology Laboratory, Department of Zoology , University of Delhi , Delhi - 110007 , India
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry , Helmholtz Centre for Environmental Research-UFZ , Permoserstraße 15 , 04318 Leipzig , Germany
| |
Collapse
|
6
|
Schilling IE, Bopp CE, Lal R, Kohler HPE, Hofstetter TB. Assessing Aerobic Biotransformation of Hexachlorocyclohexane Isomers by Compound-Specific Isotope Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7419-7431. [PMID: 31132243 DOI: 10.1021/acs.est.9b01007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Contamination of soils and sediments with the highly persistent hexachlorocyclohexanes (HCHs) continues to be a threat for humans and the environment. Despite the existence of bacteria capable of biodegradation and cometabolic transformation of HCH isomers, such processes occur over time scales of decades and are thus challenging to assess. Here, we explored the use of compound-specific isotope analysis (CSIA) to track the aerobic biodegradation and biotransformation pathways of the most prominent isomers, namely, (-)-α-, (+)-α-, β-, γ-, and δ-HCH, through changes of their C and H isotope composition in assays of LinA2 and LinB enzymes. Dehydrochlorination of (+)-α-, γ-, and δ-HCH catalyzed by LinA2 was subject to substantial C and H isotope fraction with apparent 13C- and 2H-kinetic isotope effects (AKIEs) of up to 1.029 ± 0.001 and 6.7 ± 2.9, respectively, which are indicative of bimolecular eliminations. Hydrolytic dechlorination of δ-HCH by LinB exhibited even larger C but substantially smaller H isotope fractionation with 13C- and 2H-AKIEs of 1.073 ± 0.006 and 1.41 ± 0.04, respectively, which are typical for nucleophilic substitutions. The systematic evaluation of isomer-specific phenomena showed that, in addition to contaminant uptake limitations, diffusion-limited turnover ((-)-α-HCH), substrate dissolution (β-HCH), and potentially competing reactions catalyzed by constitutively expressed enzymes might bias the assessment of HCH biodegradation by CSIA at contaminated sites.
Collapse
Affiliation(s)
- Iris E Schilling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Charlotte E Bopp
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Rup Lal
- Department of Zoology , University of Delhi , Delhi 110007 , India
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| |
Collapse
|
7
|
Lu Q, Qiu L, Yu L, Zhang S, de Toledo RA, Shim H, Wang S. Microbial transformation of chiral organohalides: Distribution, microorganisms and mechanisms. JOURNAL OF HAZARDOUS MATERIALS 2019; 368:849-861. [PMID: 30772625 DOI: 10.1016/j.jhazmat.2019.01.103] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 05/27/2023]
Abstract
Chiral organohalides including dichlorodiphenyltrichloroethane (DDT), Hexabromocyclododecane (HBCD) and polychlorinated biphenyls (PCBs) raise a significant concern in the environmental occurrence, fate and ecotoxicology due to their enantioselective biological effects. This review provides a state-of-the-art overview on enantioselective microbial transformation of the chiral organohalides. We firstly summarized worldwide field assessments of chiral organohalides in a variety of environmental matrices, which suggested the pivotal role of microorganisms in enantioselective transformation of chiral organohalides. Then, laboratory studies provided experimental evidences to further link enantioselective attenuation of chiral organohalides to specific functional microorganisms and enzymes, revealing mechanistic insights into the enantioselective microbial transformation processes. Particularly, a few amino acid residues in the functional enzymes could play a key role in mediating the enantioselectivity at the molecular level. Finally, major challenges and further developments toward an in-depth understanding of the enantioselective microbial transformation of chiral organohalides are identified and discussed.
Collapse
Affiliation(s)
- Qihong Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Lan Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Ling Yu
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China
| | - Shangwei Zhang
- UFZ Department of Ecological Chemistry, Helmholtz Centre for Environmental Research, Permoserstraße 15, 04318 Leipzig, Germany
| | - Renata Alves de Toledo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Hojae Shim
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078 Macau SAR, China
| | - Shanquan Wang
- School of Environmental Science and Engineering, Sun Yat-Sen University, 510275 Guangzhou, China; Environmental Microbiome Research Center, Sun Yat-Sen University, 510275 Guangzhou, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, 510275 Guangzhou, China.
| |
Collapse
|
8
|
Schilling IE, Hess R, Bolotin J, Lal R, Hofstetter TB, Kohler HPE. Kinetic Isotope Effects of the Enzymatic Transformation of γ-Hexachlorocyclohexane by the Lindane Dehydrochlorinase Variants LinA1 and LinA2. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2353-2363. [PMID: 30674184 DOI: 10.1021/acs.est.8b04234] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Compound-specific isotope analysis (CSIA) can provide insights into the natural attenuation processes of hexachlorocyclohexanes (HCHs), an important class of persistent organic pollutants. However, the interpretation of HCH stable isotope fractionation is conceptually challenging. HCHs exist as different conformers that can be converted into each other, and the enzymes responsible for their transformation discriminate among those HCH conformers. Here, we investigated the enzyme specificity of apparent 13C- and 2H-kinetic isotope effects (AKIEs) associated with the dehydrochlorination of γ-HCH (lindane) by two variants of the lindane dehydrochlorinases LinA1 and LinA2. While LinA1 and LinA2 attack γ-HCH at different trans-1,2-diaxial H-C-C-Cl moieties, the observed C and H isotope fractionation was large, typical for bimolecular eliminations, and was not affected by conformational mobility. 13C-AKIEs for transformation by LinA1 and LinA2 were the same (1.024 ± 0.001 and 1.025 ± 0.001, respectively), whereas 2H-AKIEs showed minor differences (2.4 ± 0.1 and 2.6 ± 0.1). Variations of isotope effects between LinA1 and LinA2 are small and in the range reported for different degrees of C-H bond cleavage in transition states of dehydrochlorination reactions. The large C and H isotope fractionation reported here for experiments with pure enzymes contrasts with previous observations from whole cell experiments and suggests that specific uptake processes by HCH-degrading microorganisms might modulate the observable HCH isotope fractionation at contaminated sites.
Collapse
Affiliation(s)
- Iris E Schilling
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Ramon Hess
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Jakov Bolotin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| | - Rup Lal
- Department of Zoology , University of Delhi , Delhi 110007 , India
| | - Thomas B Hofstetter
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
- Institute of Biogeochemistry and Pollutant Dynamics , ETH Zürich , CH-8092 Zürich , Switzerland
| | - Hans-Peter E Kohler
- Eawag, Swiss Federal Institute of Aquatic Science and Technology , CH-8600 Dübendorf , Switzerland
| |
Collapse
|