1
|
Wang Q, Zhang D, Li X, Wang Y, Wang H, Zhang Z, Song W, Guo P. Effects of humic electron mediators on reductive dechlorination of polychlorinated biphenyl by consortia enriched from terrestrial and marine environments. Front Microbiol 2024; 15:1452787. [PMID: 39149206 PMCID: PMC11324565 DOI: 10.3389/fmicb.2024.1452787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 07/15/2024] [Indexed: 08/17/2024] Open
Abstract
Humic electron mediators can facilitate the reductive dehalogenation of organohalogenated compounds by accelerating electron transfer. To investigate the effect of humic electron mediators on the microbial anaerobic reductive dechlorination of Polychlorinated biphenyls (PCBs), three types of humic electron mediators, humin (HM), humic acid (HA), and anthraquinone-2,6-disulfonic acid (AQDS, HA analogs), were added to PCB dechlorination cultures enriched from different sources in terrestrial and marine environments (T and M cultures). The results showed that meta- and para-site dechlorination occurred in the M culture, while only meta-site dechlorination occurred in the T culture. The dechlorination process N and the dechlorination process H or H' are presented in both cultures. HM enhanced PCB dechlorination metabolic activity in both cultures mainly by promoting meta-site dechlorination. HA showed a weak promoting effect on the M culture by promoting para-chlorine removal but inhibited the dechlorination metabolism of the terrestrial-origin culture, inhibiting meta-chlorine removal. AQDS showed inhibitory effects on both cultures by inhibiting the microbial removal of meta-chlorine. High-throughput sequencing and qPCR results suggest that HM is not a carbon source for the potential dechlorinating metabolism of Dehalococcoides but may promote reductive dechlorination by changing the community structure, and AQDS may inhibit anaerobic reductive dechlorination of PCBs by inhibiting the growth of Dehalococcoides. This study provides insights into the mechanism of enhancing PCB microbial dechlorination mediated by humic substances and plays a significant role in extending the application prospects of PCBs bioremediation technology.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- School of International Studies, Ningbo University, Ningbo, China
| | - Dongdong Zhang
- Donghai Laboratory, Zhoushan, China
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Xinkai Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Zhichao Zhang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
| | - Wei Song
- School of International Studies, Ningbo University, Ningbo, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan, China
- Hubei Hongshan Laboratory, Wuhan, China
| |
Collapse
|
2
|
Tong H, Chen M, Lv Y, Liu C, Zheng C, Xia Y. Changes in the microbial community during microbial microaerophilic Fe(II) oxidation at circumneutral pH enriched from paddy soil. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2021; 43:1305-1317. [PMID: 32975698 DOI: 10.1007/s10653-020-00725-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
Fe(II)-oxidizing bacteria (FeOB) are important catalysts for iron cycling in iron-rich marine, groundwater, and freshwater environments. However, few studies have reported the distribution and diversity of these bacteria in flooded paddy soils. This study investigates the microbial structure and diversity of microaerophilic Fe(II)-oxidizing bacteria (mFeOB) and their possible role in Fe(II) oxidation in iron-rich paddy soils. Using enrichment experiments that employed serial transfers, the changes in microaerophilic microbial community were examined via 16S rRNA gene high-throughput sequencing. During enrichments, the Fe(II) oxidation rate decreased as transfers increased, and the maximum rate of Fe(II) oxidation was observed in the first transfer (0.197 mM day-1). Results from X-ray diffraction of minerals and scanning electron microscopy of the cell-mineral aggregates revealed that cell surfaces in all transfers were partly covered with amorphous iron oxide formed by FeOB. After four transfers, the phyla of Proteobacteria had a dominant presence that reached up to 95%. Compared with the original soil, the relative abundances of Cupriavidus, Massilia, Pseudomonas, Ralstonia, Sphingomonas, and Variovorax increased in FeS gradient tubes and became dominant genera after transfers. Cupriavidus, Pseudomonas, and Ralstonia have been identified as FeOB previously. Furthermore, the structure of the microbial community tended to be stable as transfers increased, indicating that other bacterial species might perform important roles in Fe(II) oxidation. These results suggest the potential involvement of mFeOB and these other microorganisms in the Fe(II)-oxidizing process of soils. It will be helpful for future studies to consider their role in related biogeochemical processes, such as transformation of organic matters and heavy metals.
Collapse
Affiliation(s)
- Hui Tong
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Manjia Chen
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Yahui Lv
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science and Technology, Guangdong Academy of Sciences, Guangzhou, 510650, China
| | - Chengshuai Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Chunju Zheng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yafei Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
3
|
Zhu M, Lv X, Franks AE, Brookes PC, Xu J, He Y. Maize straw biochar addition inhibited pentachlorophenol dechlorination by strengthening the predominant soil reduction processes in flooded soil. JOURNAL OF HAZARDOUS MATERIALS 2020; 386:122002. [PMID: 31901711 DOI: 10.1016/j.jhazmat.2019.122002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 12/04/2019] [Accepted: 12/29/2019] [Indexed: 06/10/2023]
Abstract
Biochar has received increasing attention for its multifunctional applications as a soil amendment. The dual effect of biochar on reductive organic pollutants and soil biogeochemical processes under anaerobic environments in parallel has yet to be fully explored. In this study, anaerobic batch experiments were conducted to examine the effect of biochar on both reductive transformation of pentachlorophenol (PCP) and soil redox processes in flooded soil. Compared to biochar-free controls, the reductive dechlorination of PCP was significantly inhibited following biochar addition, with the inhibition degree increased with increasing amount of biochar. Dissimilatory iron and sulfate reduction, as well as the production of methane, were significantly enhanced following biochar addition. The bacterial and archaeal communities showed a functional selection responded to the addition of biochar and PCP, with the core functional groups at the genus level including Dethiobacter, Clostridium, Geosporobacter, Desulfuromonas, Desulfatitalea, and Methanosarcina. These findings indicated that biochar could affect soil microbial redox processes and may act as an electron mediator altering electron distribution from PCP dechlorination to the predominant soil reduction processes, and increase understanding regarding biochar's comprehensive effects on the remediation of natural flooded soil polluted by chlorinated organic pollutants that can be degraded reductively.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xiaofei Lv
- Department of Environmental Engineering, China Jiliang University, Hangzhou 310018, China
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, School of Life Sciences, La Trobe University, Victoria 3086, Australia; Centre for Future Landscape, La Trobe University, Melbourne, Victoria, Australia
| | - Philip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
4
|
Wang Q, Song X, Tang S, Yu L. Enhanced removal of tetrachloroethylene from aqueous solutions by biodegradation coupled with nZVI modified by layered double hydroxide. CHEMOSPHERE 2020; 243:125260. [PMID: 31734600 DOI: 10.1016/j.chemosphere.2019.125260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 10/12/2019] [Accepted: 10/29/2019] [Indexed: 06/10/2023]
Abstract
Chlorinated volatile organic compounds, such as tetrachloroethylene (PCE), are the most commonly detected toxic contaminants in groundwater. In this study, the performance of PCE removal by a microbial consortium combined with nZVI modified by layered double hydroxide (nZVI-LDH) was evaluated. The enriched PCE-degrading consortium consisted of 44.49% Clostridium and other potential PCE degraders, and 0.5-2.5 mg/L PCE was completely biodegraded within 4 days. The characterization of nZVI-LDH indicated that LDH was coated on the surfaces of nZVI particles with an increased surface area. The PCE removal kinetics by nZVI-LDH was well described by a second-order model, and the removal rate constant of nZVI-LDH was 0.12 L h/mg, higher than that of native nZVI (0.02 L h/mg). Interestingly, the presence of Cu2+ improved the removal efficiency of PCE by nZVI-LDH, owing to its role as a catalyst or medium for charge transfer during reduction. Removal of PCE was enhanced by coupling the PCE-degrading consortium and nZVI-LDH. The initial removal of PCE was mainly dominated by the abiotic degradation and adsorption of nZVI-LDH, and biodegradation then played a major role in the exhaustion of nZVI-LDH. These results suggest that biodegradation coupled with nZVI-LDH has a great potential for applications in the remediation of chlorinated-solvent contaminated groundwater.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 21008, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 21008, China.
| | - Shiyue Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 21008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing, 210037, China
| |
Collapse
|
5
|
Chloroanisoles and Chlorophenols Explain Mold Odor but Their Impact on the Swedish Population Is Attributed to Dampness and Mold. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030930. [PMID: 32028595 PMCID: PMC7037649 DOI: 10.3390/ijerph17030930] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
We recently reported that mold odor may be explained by chloroanisoles (CAs) formed by microbial biotransformation of chlorophenols (CPs) in legacy wood preservatives. Here we examine psychophysical aspects of CAs and trace their historic origins in buildings. Our exposure of healthy volunteers shows that 2,4,6-triCA is often perceived as unpleasant, characterized as musty or moldy and is detected at 13 ng/m3 or lower. Similar concentrations are reported in buildings with odor complaints. Scrutiny of written records reveal that new building construction methods were introduced in the 1950s, namely crawlspaces and concrete slabs on the ground. These constructions were prone to dampness and attack from wood decay fungi, prompting chemical companies and authorities to advocate preservatives against rot. Simultaneously, CPs became household chemicals used for example in indoor paints. When large-scale odor problems evolved, the authorities that once approved the preservatives attributed the odor to hidden mold, with no evidence that substantial microbial biomass was necessary for odor formation. Thereby the public remained unaware of problematic exposure to CPs and CAs. We conclude that the introduction of inappropriate designs of house foundations and CP-based preservatives once ignited and still provide impetus for indoor air research on "dampness and mold".
Collapse
|
6
|
Wang Q, Yang M, Song X, Tang S, Yu L. Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193775. [PMID: 31597267 PMCID: PMC6802363 DOI: 10.3390/ijerph16193775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022]
Abstract
This study was conducted to explore the potential for 1,2-Dibromoethane (EDB) biodegradation by an acclimated microbial consortium under simulated dynamic groundwater conditions. The enriched EDB-degrading consortium consisted of anaerobic bacteria Desulfovibrio, facultative anaerobe Chromobacterium, and other potential EDB degraders. The results showed that the biodegradation efficiency of EDB was more than 61% at 15 °C, and the EDB biodegradation can be best described by the apparent pseudo-first-order kinetics. EDB biodegradation occurred at a relatively broad range of initial dissolved oxygen (DO) from 1.2 to 5.1 mg/L, indicating that the microbial consortium had a strong ability to adapt. The addition of 40 mg/L of rhamnolipid and 0.3 mM of sodium lactate increased the biodegradation. A two-phase biodegradation scheme was proposed for the EDB biodegradation in this study: an aerobic biodegradation to carbon dioxide and an anaerobic biodegradation via a two-electron transfer pathway of dihaloelimination. To our knowledge, this is the first study that reported EDB biodegradation by an acclimated consortium under both aerobic and anaerobic conditions, a dynamic DO condition often encountered during enhanced biodegradation of EDB in the field.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Miaoyan Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Shiyue Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
7
|
Zhu M, Feng X, Qiu G, Feng J, Zhang L, Brookes PC, Xu J, He Y. Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:258-266. [PMID: 31005708 DOI: 10.1016/j.jhazmat.2019.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Methanogenesis is commonly mass-produced under anaerobic conditions and serves as a major terminal electron accepting process driving the degradation of organic biomass. In this study, a cofactor of methanogenesis (coenzyme M, CoM) and a classic methanogensis inhibitor (2-bromoethanesulfonate, BES) were added at different concentrations to investigate how methanogenesis would affect PCP degradation in flooded soil. Strikingly, the processes of methanogenesis and PCP degradation were simultaneously promoted with CoM, or inhibited with BES, significantly (p < 0.05). High-throughput sequencing for soil bacterial and archaeal community structures revealed that members of Desulfitobacterium, Dethiobacter, Sedimentibacter, Bacillus and Methanosarcina might act as the core functional groups jointly perform PCP degradation in flooded soil, possibly through assisting microbial mediated dechlorination in direct organohalide-respiration, and/or indirect co-metabolization in complex anaerobic soil conditions. This study implied an underlying synergistic coupling between methanogenesis and dechlorination, and provided insights into a novel consideration with respect to coordinating methanogenesis while promoting anaerobic degradation of PCP for complex polluted soil environment, which is necessary for the improved all-win remediation.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xi Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Gaoyang Qiu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiayin Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Lujun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Phillip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
8
|
Wang NX, Lu XY, Tsang YF, Mao Y, Tsang CW, Yueng VA. A comprehensive review of anaerobic digestion of organic solid wastes in relation to microbial community and enhancement process. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:507-516. [PMID: 30144051 DOI: 10.1002/jsfa.9315] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 07/28/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
Organic solid wastes (OSWs) should be regarded as valuable resources rather than dead-end landfill waste that causes public health and odor concerns. Anaerobic digestion (AD) is an ideal approach for managing organic solid waste issues and involves using a group of anaerobic microorganisms to transform OSWs into useful products. In this review, over 100 publications related to AD of OSWs have been compiled, discussed, and analyzed. A comprehensive analysis of the environmental and safety impacts of AD, its key environmental factors, co-digestion, and pretreatment, as well as the AD of OSWs by various anaerobic microbes uncovered by high throughput sequencing-based approaches, is presented. The purpose of this review is to provide an outline of the current knowledge of AD processes from a multi-angle perspective. A comprehensive understanding of AD of OSWs and genome-enabled biology development could be helpful for providing up-to-date knowledge of AD, developing it, overcoming its drawbacks and, ultimately, improving global waste control for more efficient environmental management. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Neng-Xiong Wang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| | - Xiao-Ying Lu
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
| | - Yiu-Fai Tsang
- Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, P. R. China
- Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, Shenzhen University, Shenzhen, P. R. China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| | - Vivien Au Yueng
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Tsing Yi, Hong Kong, China
| |
Collapse
|