1
|
Chen S, Yang C, Zhu G, Zhang H, Yan N, Zhang Y, Rittmann BE. Selective acceleration of 2-hydroxyl pyridine mono-oxygenation using specially acclimated biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113887. [PMID: 34610559 DOI: 10.1016/j.jenvman.2021.113887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/26/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Biodegradation of pyridine starts with two mono-oxygenation reactions, and 2-hydroxyl pyridine (2-HP) accumulates as pyridine is mono-oxygenated in the first reaction. The accumulation of 2-HP inhibits both initial reactions. Therefore, selective acceleration of the second mono-oxygenation reaction should significantly enhance pyridine transformation and mineralization. Activated-sludge biomass was separately acclimated with pyridine or 2-HP to produce pyridine- and 2-HP-acclimated biomasses. The pyridine-acclimated biomass was superior for pyridine biodegradation, but the 2-HP-acclimated biomass was superior for 2-HP biodegradation. As a consequence, the pyridine-acclimated biomass by itself achieved faster mono-oxygenation of pyridine to 2-HP, but 2-HP accumulated, which limited mineralization to 60%. In contrast, mineralization reached 90% when one-third of the pyridine-acclimated was replaced with 2-HP-acclimated biomass, because 2-HP did not accumulate during pyridine biodegradation. The lack of 2-HP accumulation relieved its inhibition: e.g., the pyridine removal rates, normalized to the mass of pyridine-acclimated biomass, increased from 0.52 to 0.57 mM0.5⋅h-1 when one-third of the pyridine-acclimated biomass was replaced by 2-HP-acclimated biomass. Phylogenetic analysis showed that microbiological communities of pyridine-acclimated biomass and 2-HP-acclimated biomass differed in important ways. On the one hand, the 2-HP-acclimated biomass was richer and dominated by a rare biosphere, or genera having <0.1% of total reads. On the other hand, the most-enriched genus in the pyridine-acclimated community (Methylibium) is associated with the first mono-oxygenation of pyridine, while enriched genera in the 2-HP-acclimated community (Sediminibacterium and Dokdonella) are associated with the second mono-oxygenation of pyridine.
Collapse
Affiliation(s)
- Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Chao Yang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Haiyun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China
| | - Ning Yan
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China; Yangtze Delta Wetland Ecosystem National Field Scientific Observation and Research Station, PR China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ85287-5701, USA
| |
Collapse
|
2
|
Zhu G, Zhang Y, Chen S, Wang L, Zhang Z, Rittmann BE. How bioaugmentation with Comamonas testosteroni accelerates pyridine mono-oxygenation and mineralization. ENVIRONMENTAL RESEARCH 2021; 193:110553. [PMID: 33271145 DOI: 10.1016/j.envres.2020.110553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 11/02/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Pyridine is a common heterocycle found in industrial wastewaters. Its biodegradation begins with a mono-oxygenation reaction, and bioaugmentation with bacteria able to carry out this mono-oxygenation is one strategy to improve pyridine removal and mineralization. Although bioaugmentation has been used to enhance the biodegradation of recalcitrant organic compounds, the specific role played by the bioaugmented bacteria usually has not been addressed. We acclimated activated-sludge biomass for pyridine biodegradation and then isolated a strain -- Comamonas testosteroni -- based on its ability to biodegrade and grow on pyridine alone. Pyridine was removed faster by C. testosteroni, compared to pyridine-acclimated biomass, but pyridine mineralization was slower. Pyridine biodegradation and mineralization rates were accelerated when C. testosteroni was bioaugmented into the acclimated biomass, which increased the amount of C. testosteroni, but otherwise had minimal effects on the microbial community. The key role of C. testosteroni was to accelerate the first step of pyridine biodegradation, mono-oxygenation to 2-hydroxylpyridine (2HP), and the acclimated biomass was better able to complete downstream reactions leading to mineralization. Thus, bioaugmentation increased the rates of pyridine mono-oxygenation and subsequent mineralization through the synergistic roles of C. testosteroni and the main community in the acclimated biomass.
Collapse
Affiliation(s)
- Ge Zhu
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Yongming Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China.
| | - Songyun Chen
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Lu Wang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Zhichun Zhang
- Department of Environmental Engineering, School of Environmental and Geographical Science, Shanghai Normal University, Shanghai, 200234, PR China
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85287-5701, USA
| |
Collapse
|
3
|
Gupta N, O’Loughlin EJ, Sims GK. Microbial Degradation of Pyridine and Pyridine Derivatives. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|