1
|
Lv C, Cheng H, Fan R, Sun J, Liu X, Ji Y. Fabrication of rGO/BiOI photocathode and its catalytic performance in the degradation of 4-Fluoroaniline. Heliyon 2024; 10:e37024. [PMID: 39286232 PMCID: PMC11402956 DOI: 10.1016/j.heliyon.2024.e37024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/26/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Organic fluorine compounds are acute carcinogenic and mutagenic to humans. Photoelectrocatalysis (PEC) treatment is an innovative technology in the field of the removal of fluorine compounds, and thus current research focused on improving stability and catalytic ability of photoanode. In this study, it has been synthesized a rGO/BiOI photocathode for the efficient degradation of 4-Fluoroaniline (4-FA). The physical characterization and photoelectrochemical properties of the photocathode was determined. The results indicate that the PEC treatment with the rGO/BiOI photocathode was more efficient compared with individual processes. During the optimization experiments, the PEC treatment achieved 99.58 % and 72.12 % of 4-FA degradation and defluorination within 1 h. Cyclic stability experiments show that rGO/BiOI photocathode was efficient and stable, which reached 96.91 % and 67.64 % of 4-FA degradation and defluorination after five cycles. Mechanism analysis indicates that the PEC process was based on an electrochemical reaction and photo-induced processes. The degradation product of 4-FA was mainly 2,4-di-t-butylphenol, and trapping experiments indicates that h+ is the primary oxidizing species. Therefore, PEC treatment with rGO/BiOI photocathode is a competitive green approach to remove fluorine compounds pollutants and brings new insights into development of PEC treatment.
Collapse
Affiliation(s)
- Chenhan Lv
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Haixiang Cheng
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Rui Fan
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Jingyu Sun
- College of Chemical and Materials Engineering, Quzhou University, Quzhou, 324000, PR China
| | - Xinghai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| | - Yinghui Ji
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, PR China
| |
Collapse
|
2
|
Li M, Shang Z, Ma Y, Zhao H, Ni Z, Wei Z, Zhang X. Tolerance Mechanisms and Removal Efficiency of Chlorella pyrenoidosa in Treating 3-Fluorophenol Pollution. Metabolites 2024; 14:449. [PMID: 39195545 DOI: 10.3390/metabo14080449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/03/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
This study investigates the growth tolerance mechanisms of Chlorella pyrenoidosa to 3-fluorophenol and its removal efficiency by algal cells. Our results indicate that C. pyrenoidosa can tolerate up to 100 mg/L of 3-fluorophenol, exhibiting a significant hormesis effect characterized by initial inhibition followed by promotion of growth. In C. pyrenoidosa cells, the activities of superoxide dismutase (SOD) and catalase (CAT), as well as the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), were higher than or comparable to the control group. Metabolic analysis revealed that the 3-fluorophenol treatment activated pathways, such as glycerol phospholipid metabolism, autophagy, glycosylphosphatidylinositol (GPI)-anchored protein biosynthesis, and phenylpropanoid biosynthesis, contributed to the stabilization of cell membrane structures and enhanced cell repair capacity. After 240 h of treatment, over 50% of 3-fluorophenol was removed by algal cells, primarily through adsorption. Thus, C. pyrenoidosa shows potential as an effective biosorbent for the bioremediation of 3-fluorophenol.
Collapse
Affiliation(s)
- Min Li
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, China
| | - Zhenfang Shang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Yonglan Ma
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Huijun Zhao
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Zhijing Ni
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, China
| | - Zhaojun Wei
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
| | - Xiu Zhang
- School of Biological Science and Engineering, North Minzu University, Yinchuan 750021, China
- Ningxia Key Laboratory of Microbial Resources Development and Applications in Special Environment, Yinchuan 750021, China
| |
Collapse
|
3
|
Alexandrino DAM, Mucha AP, Almeida CMR, Carvalho MF. Atlas of the microbial degradation of fluorinated pesticides. Crit Rev Biotechnol 2021; 42:991-1009. [PMID: 34615427 DOI: 10.1080/07388551.2021.1977234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Fluorine-based agrochemicals have been benchmarked as the golden standard in pesticide development, prompting their widespread use in agriculture. As a result, fluorinated pesticides can now be found in the environment, entailing serious ecological implications due to their harmfulness and persistence. Microbial degradation might be an option to mitigate these impacts, though environmental microorganisms are not expected to easily cope with these fluoroaromatics due to their recalcitrance. Here, we provide an outlook on the microbial metabolism of fluorinated pesticides by analyzing the degradation pathways and biochemical processes involved, while also highlighting the central role of enzymatic defluorination in their productive metabolism. Finally, the potential contribution of these microbial processes for the dissipation of fluorinated pesticides from the environment is also discussed.
Collapse
Affiliation(s)
- Diogo A M Alexandrino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| | - Ana P Mucha
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,Faculty of Sciences, University of Porto, Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal
| | - Maria F Carvalho
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos s/n, Matosinhos, Portugal.,School of Medicine and Biomedical Sciences (ICBAS), University of Porto, Porto, Portugal
| |
Collapse
|
4
|
Anjos CS, Lima RN, Porto ALM. An overview of neonicotinoids: biotransformation and biodegradation by microbiological processes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:37082-37109. [PMID: 34056690 DOI: 10.1007/s11356-021-13531-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Neonicotinoids are a class of pesticides widely used in different phases of agricultural crops. Similar to other classes of pesticides, they can damage human and environmental health if overused, and can be resistent to degradation. This is especially relevant to insect health, pollination, and aquatic biodiversity. Nevertheless, application of pesticides is still crucial for food production and pest control, and should therefore be carefully monitored by the government to control or reduce neonicotinoid contamination reaching human and animal feed. Aware of this problem, studies have been carried out to reduce or eliminate neonicotinoid contamination from the environment. One example of a green protocol is bioremediation. This review discusses the most recent microbial biodegradation and bioremediation processes for neonicotinoids, which employ isolated microorganisms (bacteria and fungi), consortiums of microorganisms, and different types of soils, biobeds, and biomixtures.
Collapse
Affiliation(s)
- Charlene S Anjos
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Rafaely N Lima
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - André L M Porto
- Laboratório de Química Orgânica e Biocatálise, Instituto de Química de São Carlos, Universidade de São Paulo, Av. João Dagnone, 1100, Ed. Química Ambiental, Santa Angelina, São Carlos, SP, 13563-120, Brazil.
| |
Collapse
|
5
|
Zhao ZQ, Wei XM, Shen XL, Abbas G, Fan R, Jin Y. Aerobic degradation of 4-fluoroaniline and 2,4-difluoroaniline: performance and microbial community in response to the inocula. Biodegradation 2021; 32:53-71. [PMID: 33428058 DOI: 10.1007/s10532-021-09925-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 01/02/2021] [Indexed: 11/27/2022]
Abstract
In this study, a distinct inoculum was investigated as an isolated variable within sequencing batch reactors via a comparison of the 4-fluoroaniline (4-FA) or 2,4-difluoroaniline (2,4-DFA) removal amounts. The inocula were derived from a treatment plant for treating pharmaceutical wastewater plus a small amount of municipal sewage (PMS), a treatment plant for treating fluoridated hydrocarbon wastewater (FHS), and a treatment plant for treating the comprehensive wastewater in an industrial park (CIS). There were slight differences among the degradation patterns of the 4-FA for the three inocula, whether during the enrichment period or the high concentration shock period. In contrast, it was observed that the degradation efficiency of 2,4-DFA initially varied with the inocula. The FHS-derived inoculum was determined to be optimal, exhibiting the earliest degradation reaction only after an acclimation of 7 days had the highest degradation rate constant of 0.519 h-1, and had the fastest recovery time of three weeks after high concentration shock. Additionally, compared with the PMS-derived inoculum, the CIS-derived inoculum exhibited an earlier degradation reaction within three weeks, and a higher microbial diversity, but a lower shock resistance and degradation rate constant of 0.257 h-1. High-throughput sequencing demonstrated that each final consortium was different in composition, and the microbial consortia developed well on the inoculum and substrate. In comparison of the similarity among the three 2,4-DFA enrichment cultures, the higher similarity (63.9-70.0%) among three final consortia enriching with 4-FA was observed. The results indicated that the inoculum played an important role in the degradation of FAs and the microbial bacterial communities of final consortia, and the effect extent might well depend on the fluorinated level of FAs.
Collapse
Affiliation(s)
- Zhi-Qing Zhao
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China. .,College of Environment & Resource Sciences, Zhejiang University, Hangzhou, People's Republic of China.
| | - Xiao-Meng Wei
- Key Laboratory of Agro-Ecological Processes in Subtropical Region & Changsha Research Station for Agricultural and Environmental Monitoring, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Hunan, 410125, China
| | - Xiao-Li Shen
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Ghulam Abbas
- Department of Chemical Engineering, University of Gujrat, Gujrat, 50700, Pakistan
| | - Rui Fan
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| | - Yi Jin
- College of Chemical & Material Engineering, Quzhou University, Quzhou, 324000, People's Republic of China
| |
Collapse
|
6
|
Wackett LP, Robinson SL. The ever-expanding limits of enzyme catalysis and biodegradation: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Biochem J 2020; 477:2875-2891. [PMID: 32797216 PMCID: PMC7428800 DOI: 10.1042/bcj20190720] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022]
Abstract
Biodegradation is simply the metabolism of anthropogenic, or otherwise unwanted, chemicals in our environment, typically by microorganisms. The metabolism of compounds commonly found in living things is limited to several thousand metabolites whereas ∼100 million chemical substances have been devised by chemical synthesis, and ∼100 000 are used commercially. Since most of those compounds are not natively found in living things, and some are toxic or carcinogenic, the question arises as to whether there is some organism somewhere with the enzymes that can biodegrade them. Repeatedly, anthropogenic chemicals have been denoted 'non-biodegradable,' only to find they are reactive with one or more enzyme(s). Enzyme reactivity has been organized into categories of functional group transformations. The discovery of new functional group transformations has continually expanded our knowledge of enzymes and biodegradation. This expansion of new-chemical biodegradation is driven by the evolution and spread of newly evolved enzymes. This review describes the biodegradation of widespread commercial chemicals with a focus on four classes: polyaromatic, polychlorinated, polyfluorinated, and polymeric compounds. Polyaromatic hydrocarbons include some of the most carcinogenic compounds known. Polychlorinated compounds include polychlorinated biphenyls (PCBs) and many pesticides of the twentieth century. Polyfluorinated compounds are a major focus of bioremediation efforts today. Polymers are clogging landfills, killing aquatic species in the oceans and increasingly found in our bodies. All of these classes of compounds, each thought at one time to be non-biodegradable, have been shown to react with natural enzymes. The known limits of enzyme catalysis, and hence biodegradation, are continuing to expand.
Collapse
Affiliation(s)
- Lawrence P. Wackett
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A
- Biotechnology Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A
- Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A
| | - Serina L. Robinson
- Biotechnology Institute, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A
- Program in Microbiology, Immunology and Cancer Biology, University of Minnesota, Twin Cities, Minneapolis, MN 55108, U.S.A
| |
Collapse
|