1
|
Ribeiro AR, Devens KU, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance? Biodegradation 2024; 36:3. [PMID: 39470853 DOI: 10.1007/s10532-024-10097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The study evaluated the performance of thermophilic co-digestion in both single-stage methanogenic reactors (TMR) and two-stage systems, consisting of a thermophilic acidogenic reactor and a thermophilic sequential methanogenic reactor (TSMR). A 1:1 mixture of sugarcane vinasse and molasses was codigested in anaerobic fluidized bed reactors, with varying organic matter concentrations based on chemical oxygen demand (COD) ranging from 5 to 22.5 g COD L-1. Both systems achieved high organic matter removal efficiency (51 to 86.5%) and similar methane (CH4) yields (> 148 mL CH4 g-1CODremoved). However, at the highest substrate concentration (22.5 g COD L-1), the TSMR outperformed the TMR in terms of energy generation potential (205.6 kJ d-1 vs. 125 kJ d-1). Phase separation in the two-stage system increased bioenergy generation by up to 43.5% at lower substrate concentrations (7.5 g COD L-1), with hydrogen (H2) generation playing a critical role in this enhancement. Additionally, the two-stage system produced value-added products, including ethanol (2.3 g L-1), volatile organic acids (3.2 g lactate L-1), and H2 (0.6-2.7 L H2 L-1 d-1). Microbial analysis revealed that Thermoanaerobacterium, Caldanaerobius, and Clostridium were dominant at 5 g COD L-1, while Lactobacillus prevailed at concentrations of ≥ 15 g COD L-1. The primary methane producers in the single-stage system were Methanosarcina, Methanoculleus, and Methanobacterium, whereas Methanothermobacter, Bathyarchaeia, and Methanosarcina dominated in the two-stage system.
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Kauanna Uyara Devens
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Franciele Pereira Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Pirete LDM, Camargo FP, Grosseli GM, Sakamoto IK, Fadini PS, Silva EL, Varesche MBA. Microbial diversity and metabolic inference of diclofenac removal in optimised batch heterotrophic-denitrifying conditions by means of factorial design. ENVIRONMENTAL TECHNOLOGY 2024; 45:2847-2866. [PMID: 36927407 DOI: 10.1080/09593330.2023.2192365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Using the Response Surface Methodology (RSM) and Rotational Central Composite Design (RCCD), this study evaluated the removal of DCF under denitrifying conditions, with ethanol as cosubstrate, in batch reactors, being 1 L Erlenmeyer flasks (330 mL of reactional volume) containing Dofing medium and kept under agitation at 130 rpm and incubated at mesophilic temperature (30 °C). It considered the individual and multiple effects of the variables: nitrate (130 - 230 mg NO3- L-1), DCF (60-100 µg DCF L-1) and ethanol (130 - 230 mg EtOH L-1). The highest drug removal efficiency (17.5%) and total nitrate removal were obtained at 176.6 ± 4.3 mg NO3 -L-1, 76.8 ± 3.7 µg DCF L-1, and 180.0 ± 2.5 mg EtOH L-1. Under such conditions, the addition of ethanol and nitrate was significant for the additional removal of diclofenac (p > 0.05). The prevalence of Rhodanobacter, Haliangium and Terrimonas in the inoculum biomass (activated sludge systems) was identified through the 16S rRNA gene sequencing. The potential of these genera to remove nitrate and degrade diclofenac was inferred, and the main enzymes potentially involved in this process were α-methylacyl-CoA racemase, long-chain fatty acid-CoA ligase, catalases and pseudoperoxidases.
Collapse
Affiliation(s)
- Luciana de Melo Pirete
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | | | | | | |
Collapse
|
3
|
Dornelles HS, Sabatini CA, Adorno MAT, Silva EL, Lee PH, Varesche MBA. Microbial synergies drive simultaneous biodegradation of ethoxy and alkyl chains of Nonylphenol Ethoxylate in fluidized bed reactors. CHEMOSPHERE 2024; 358:142084. [PMID: 38642772 DOI: 10.1016/j.chemosphere.2024.142084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 04/02/2024] [Accepted: 04/18/2024] [Indexed: 04/22/2024]
Abstract
The widely-used surfactant Nonylphenol Ethoxylate (NPEO) produces endocrine-disrupting compounds during biodegradation, with these byproducts being more harmful than untreated NPEO. This study investigates the effectiveness of a Fluidized Bed Reactor (FBR) in reducing the production of 4-Nonylphenol (4-NP) during the biodegradation of NPEO. Two identical FBR filled with sand were used to assess the NPEO degradation and to enhance the microbial consortia capable of breaking down the complex byproducts, ethanol and fumarate were introduced as co-substrates. Our findings demonstrate the significant potential of the FBR, especially when coupled with fumarate, for enhancing the surfactant degradation. It outperforms the efficiency achieved with ethanol as the primary electron donor, albeit with a higher rate of byproduct production. Microbial community taxonomy and metabolic prediction revealed the high abundance of Geobacter (1.51-31.71%) and Methanobacterium (1.08-13.81%) in non-conductive sand. This may hint a new metabolic interaction and expand our understanding of Direct Interspecies Electron Transfer (DIET) in bioreactors applied to micropollutants degradation. Such an intricate relationship between facultative and anaerobes working together to simultaneously biodegrade the ethoxy and alkyl chains presents a new perspective on NPEO degradation and can potentially be extended to other micropollutants.
Collapse
Affiliation(s)
- Henrique S Dornelles
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil; Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Carolina A Sabatini
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Maria A T Adorno
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, São Paulo, Brazil
| | - Po-Heng Lee
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, Imperial College Road, SW7 2BU, London, England, United Kingdom
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering, University of São Paulo, Av. João Dagnone - 1100, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
4
|
Costa JL, Silva LG, Veras STS, Gavazza S, Florencio L, Motteran F, Kato MT. Use of nitrate, sulphate, and iron (III) as electron acceptors to improve the anaerobic degradation of linear alkylbenzene sulfonate: effects on removal potential and microbiota diversification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33158-4. [PMID: 38613756 DOI: 10.1007/s11356-024-33158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant that is found in certain amounts in wastewaters and even in water bodies, despite its known biodegradability. This study aimed to assess the influence of nitrate, sulphate, and iron (III) on LAS anaerobic degradation and biomass microbial diversity. Batch reactors were inoculated with anaerobic biomass, nutrients, LAS (20 mg L-1), one of the three electron acceptors, and ethanol (40 mg L-1) as a co-substrate. The control treatments, with and without co-substrate, showed limited LAS biodegradation efficiencies of 10 ± 2% and 0%, respectively. However, when nitrate and iron (III) were present without co-substrate, biodegradation efficiencies of 53 ± 4% and 75 ± 3% were achieved, respectively, which were the highest levels observed. Clostridium spp. was prominent in all treatments, while Alkaliphilus spp. and Bacillus spp. thrived in the presence of iron, which had the most significant effect on LAS biodegradation. Those microorganisms were identified as crucial in affecting the LAS anaerobic degradation. The experiments revealed that the presence of electron acceptors fostered the development of a more specialised microbiota, especially those involved in the LAS biodegradation. A mutual interaction between the processes of degradation and adsorption was also shown.
Collapse
Affiliation(s)
- Joelithon L Costa
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Galdino Silva
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Shyrlane T S Veras
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Sávia Gavazza
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabrício Motteran
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mario Takayuki Kato
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Teixeira RM, Sakamoto IK, Motteran F, Camargo FP, Varesche MBA. Removal of nonylphenol ethoxylate surfactant in batch reactors: emphasis on methanogenic potential and microbial community characterization under optimized conditions. ENVIRONMENTAL TECHNOLOGY 2024; 45:1343-1357. [PMID: 36352347 DOI: 10.1080/09593330.2022.2143287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
ABSTRACTNonylphenol ethoxylate (NPE) is an endocrine-disrupting chemical that has bioaccumulative, persistent and toxic characteristics in different environmental matrices and is difficult to remove in sewage treatment plants. In this study, the effects of the initial concentration of NPE (0.2 ± 0.03 - 3.0 ± 0.02 mg. L-1) and ethanol (73.9 ± 5.0-218.6 ± 10.6 mg. L-1) were investigated using factorial design. Assays were carried out in anaerobic batch reactors, using the Zinder basal medium, yeast extract (200 mg. L-1), vitamin solution and sodium bicarbonate (10% v/v). The optimal conditions were 218.56 mg.L-1 of ethanol and 1596.51 µg.L-1 of NPE, with 92% and 88% of NPE and organic matter removal, respectively, and methane yield (1689.8 ± 59.6 mmol) after 450 h of operation. In this condition, bacteria potentially involved in the degradation of this surfactant were identified in greater relative abundance, such as Acetoanaerobium (1.68%), Smithella (1.52%), Aminivibrio (0.91%), Petrimonas (0.57%) and Enterobacter (0.47%), as well as archaea Methanobacterium and Methanoregula, mainly involved in hydrogenotrophic pathway.
Collapse
Affiliation(s)
- Rômulo Mota Teixeira
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Fabrício Motteran
- Department of Civil and Environmental Engineering, Federal University of Pernambuco, Recife, Brazil
| | - Franciele Pereira Camargo
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulic Engineering and Sanitation, São Carlos School of Engineering (EESC), University of São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
6
|
Camargo FP, Lourenço V, Rodrigues CV, Sabatini CA, Adorno MAT, Silva EL, Varesche MBA. Bio-CH 4 yield of swine manure and food waste optimized by co-substrate proportions diluted in domestic sewage and pH interactions using the response surface approach. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119308. [PMID: 37883832 DOI: 10.1016/j.jenvman.2023.119308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/09/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
This research aimed at evaluating optimal conditions to obtain value-added metabolites, such as bio-CH4, by co-digesting swine manure and food waste diluted in domestic sewage. The assays were carried out in batches using the statistical methods of Rotational Central Composite Design (RCCD) and Surface Response to evaluate the ranges of food waste (1.30-9.70 gTS.L-1), pH (6.16-7.84) and granular Upflow Anaerobic Sludge Blanket sludge as inoculum (2.32-5.68 gTS.L-1), besides about 250 mL of swine manure in 500 mL Duran flasks. According to the RCCD matrix, bio-CH4 yields among 600.6 ± 60.1 and 2790.0 ± 112.0 mL CH4 gTS.L-1 were observed, besides the maximum CH4 production rate between 0.4 ± 0.5 and 49.7 ± 2.0 mL CH4 h-1 and λ between ≤0.0 and 299.3 ± 4.5 h. In the validation assay, the optimal conditions of 9.98 gTS.L-1 of food waste, pH adjusted to 8.0 and 2.20 gTS.L-1 of inoculum were considered, and the bio-CH4 yield obtained (5640.79 ± 242.98 mL CH4 gTS.L-1 or also 5201.83 ± 224.07 mL CH4 gTVS.L-1) was 11.3 times higher than in assays before optimization (499.3 ± 16.0 mL CH4 gTS.L-1) with 5 gTS.L-1 of food waste, 3 gTS.L-1 of inoculum and pH 7.0. Besides, the results observed about the energetic balance of the control and validation assays highlight the importance of process optimization, as this condition was the only one with energy supply higher than the energy required for its operation, exceeding max consumption sevenfold. Based on the most dominant microorganisms (Methanosaeta, 31.06%) and the metabolic inference of the validation assay, it could be inferred that the acetoclastic methanogenesis was the predominant pathway to CH4 production.
Collapse
Affiliation(s)
- Franciele P Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Vitor Lourenço
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Carolina Aparecida Sabatini
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Maria Angela Tallarico Adorno
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil
| | - Edson L Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod Washington Luiz, Km 235, SP 310, 13565-905, São Carlos, SP, Brazil
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av. Trabalhador São Carlense, 400, 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Camargo FP, Sakamoto IK, Delforno TP, Midoux C, Duarte ICS, Silva EL, Bize A, Varesche MBA. Microbial and functional characterization of granulated sludge from full-scale UASB thermophilic reactor applied to sugarcane vinasse treatment. ENVIRONMENTAL TECHNOLOGY 2023; 44:3141-3160. [PMID: 35298346 DOI: 10.1080/09593330.2022.2052361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Considering the scarcity of data in the literature regarding phylogenetic and metabolic composition of different inocula, especially those from thermophilic conditions, this research aimed at characterizing the microbial community and preferable metabolic pathways of an UASB reactor sludge applied to the thermophilic treatment (55°C) of sugarcane vinasse, by means of shotgun metagenomics. After its metabolic potential was depicted, it was possible to observe several genes encoding enzymes that are of great importance to anaerobic digestion processes with different wastes as substrate, especially regarding the biodegradation of carbohydrates and ligninolytic compounds, glycerolypids, volatile fatty acids and alcohols metabolism and biogas (H2 and CH4) production. The genera identified in higher relative abundances for Bacteria domain were Sulfirimonas (37.52 ± 1.8%), possibly related to the sludge endogenic activity due to its strong relation with a peptidoglycan lyase enzymes family, followed by Fluviicola (5.01 ± 1.0%), Defluviitoga (4.36 ± 0.2%), Coprothermobacter (4.32 ± 0.5%), Fervidobacterium (2.93 ± 0.3%), Marinospirillum (2.75 ± 0.2%), Pseudomonas (2.14 ± 0.2%) and Flavobacterium (1.78 ± 0.1%), mostly related with carbohydrates fermentations and/or H2 production. For Archaea domain, Methanosarcina (0.61 ± 0.1%), Methanothermobacter (0.38 ± 0.0%), Methanoculleus (0.30 ± 0.1%), Thermococcus (0.03 ± 0.0%), Methanolobus (0.02 ± 1.8%), Methanobacterium (0.013 ± 0.0%), Aciduliprofundum and Pyrococcus (0.01 ± 0.0%) were the most dominant ones, being Methanosarcina the most related with methanogenesis. It was concluded that the robust inoculum description performed in this study may subside future biotechnological researches by using similar inocula (UASB sludges), focusing on the obtainment of value-added by-products by means of anaerobic digestion, such as volatile fatty acids, alcohols and biogas (H2 and CH4), by using several types of waste as substrate.
Collapse
Affiliation(s)
- Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo (USP), São Carlos, Brazil
| | | | - Cédric Midoux
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement (PROSE), Antony, France
| | | | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos (UFSCar) São Carlos, Brazil
| | - Ariane Bize
- Université Paris-Saclay, INRAE, PRocédés biOtechnologiques au Service de l'Environnement (PROSE), Antony, France
| | | |
Collapse
|
8
|
Granatto CF, Grosseli GM, Sakamoto IK, Fadini PS, Varesche MBA. Influence of cosubstrate and hydraulic retention time on the removal of drugs and hygiene products in sanitary sewage in an anaerobic Expanded Granular Sludge Bed reactor. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 299:113532. [PMID: 34614559 DOI: 10.1016/j.jenvman.2021.113532] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DCF), ibuprofen (IBU), propranolol (PRO), triclosan (TCS) and linear alkylbenzene sulfonate (LAS) can be recalcitrant in Wastewater Treatment Plants (WWTP). The removal of these compounds was investigated in scale-up (69 L) Expanded Granular Sludge Bed (EGSB) reactor, fed with sanitary sewage from the São Carlos-SP (Brazil) WWTP and 200 mg L-1 of ethanol. The EGSB was operated in three phases: (I) hydraulic retention time (HRT) of 36±4 h; (II) HRT of 20±2 h and (III) HRT of 20±2 h with ethanol. Phases I and II showed no significant difference in the removal of LAS (63 ± 11-65 ± 12 %), DCF (37 ± 18-35 ± 11 %), IBU (43 ± 18-44 ± 16 %) and PRO (46 ± 25-51 ± 23 %) for 13±2-15 ± 2 mg L-1, 106 ± 32-462 ± 294 μg L-1, 166 ± 55-462 ± 213 μg L-1 and 201 ± 113-250 ± 141 μg L-1 influent, respectively. Higher TCS removal was obtained in phase I (72 ± 17 % for 127 ± 120 μg L-1 influent) when compared to phase II (51 ± 13 % for 135 ± 119 μg L-1 influent). This was due to its greater adsorption (40 %) in the initial phase. Phase III had higher removal of DCF (42 ± 10 % for 107 ± 26 μg L-1 influent), IBU (50 ± 15 % for 164 ± 47 μg L-1 influent) and TCS (85 ± 15 % for 185 ± 148 μg L-1 influent) and lower removal of LAS (35 ± 14 % for 12 ± 3 mg L-1 influent) and PRO (-142 ± 177 % for 188 ± 88 μg L-1 influent). Bacteria similar to Syntrophobacter, Smithella, Macellibacteroides, Syntrophus, Blvii28_wastewater-sludge_group and Bacteroides were identified in phase I with relative abundance of 3.1 %-4.7 %. Syntrophobacter was more abundant (15.4 %) in phase II, while in phase III, it was Smithella (12.7 %) and Caldisericum (15.1 %). Regarding the Archaea Domain, Methanosaeta was more abundant in phases I (84 %) and II (67 %), while in phase III it was Methanobacterium (86 %).
Collapse
Affiliation(s)
- Caroline F Granatto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Guilherme M Grosseli
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Isabel K Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| | - Pedro S Fadini
- Federal University of São Carlos, Washington LuizHighway, Km 235, Zipcode 13565-905, São Carlos, SP, Brazil.
| | - Maria Bernadete A Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Ave Trabalhador São-Carlense, No. 400, Zipcode 13566-590, São Carlos, SP, Brazil.
| |
Collapse
|