1
|
Ribeiro AR, Devens KU, Camargo FP, Sakamoto IK, Varesche MBA, Silva EL. Insights of energy potential in thermophilic sugarcane vinasse and molasses treatment: does two-stage codigestion enhance operational performance? Biodegradation 2024; 36:3. [PMID: 39470853 DOI: 10.1007/s10532-024-10097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/10/2024] [Indexed: 11/01/2024]
Abstract
The study evaluated the performance of thermophilic co-digestion in both single-stage methanogenic reactors (TMR) and two-stage systems, consisting of a thermophilic acidogenic reactor and a thermophilic sequential methanogenic reactor (TSMR). A 1:1 mixture of sugarcane vinasse and molasses was codigested in anaerobic fluidized bed reactors, with varying organic matter concentrations based on chemical oxygen demand (COD) ranging from 5 to 22.5 g COD L-1. Both systems achieved high organic matter removal efficiency (51 to 86.5%) and similar methane (CH4) yields (> 148 mL CH4 g-1CODremoved). However, at the highest substrate concentration (22.5 g COD L-1), the TSMR outperformed the TMR in terms of energy generation potential (205.6 kJ d-1 vs. 125 kJ d-1). Phase separation in the two-stage system increased bioenergy generation by up to 43.5% at lower substrate concentrations (7.5 g COD L-1), with hydrogen (H2) generation playing a critical role in this enhancement. Additionally, the two-stage system produced value-added products, including ethanol (2.3 g L-1), volatile organic acids (3.2 g lactate L-1), and H2 (0.6-2.7 L H2 L-1 d-1). Microbial analysis revealed that Thermoanaerobacterium, Caldanaerobius, and Clostridium were dominant at 5 g COD L-1, while Lactobacillus prevailed at concentrations of ≥ 15 g COD L-1. The primary methane producers in the single-stage system were Methanosarcina, Methanoculleus, and Methanobacterium, whereas Methanothermobacter, Bathyarchaeia, and Methanosarcina dominated in the two-stage system.
Collapse
Affiliation(s)
- Alexandre Rodrigues Ribeiro
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Kauanna Uyara Devens
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Franciele Pereira Camargo
- Bioenergy Research Institute (IPBEN), UNESP- São Paulo State University, Rio Claro, SP, 13500-230, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Av. João Dagnone, 1100 - Jd. Santa Angelina, São Carlos, SP, 13563-120, Brazil
| | - Edson Luiz Silva
- Department of Chemical Engineering, Federal University of São Carlos, Rod. Washington Luis, Km 235, São Carlos, SP, 13565-905, Brazil.
| |
Collapse
|
2
|
Li Y, Wang W, Chen L, Ma H, Lu X, Ma H, Liu Z. Visible-Light-Driven Z-Type Pg-C 3N 4/Nitrogen Doped Biochar/BiVO 4 Photo-Catalysts for the Degradation of Norfloxacin. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1634. [PMID: 38612148 PMCID: PMC11012328 DOI: 10.3390/ma17071634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/24/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024]
Abstract
Antibiotics cannot be effectively removed by traditional wastewater treatment processes, and have become widespread pollutants in various environments. In this study, a Z-type heterojunction photo-catalyst Pg-C3N4 (PCN)/Nitrogen doped biochar (N-Biochar)/BiVO4 (NCBN) for the degradation of norfloxacin (NOR) was prepared by the hydrothermal method. The specific surface area of the NCBN (42.88 m2/g) was further improved compared to BiVO4 (4.528 m2/g). The photo-catalytic performance of the catalyst was investigated, and the N-Biochar acted as a charge transfer channel to promote carrier separation and form Z-type heterojunctions. Moreover, the NCBN exhibited excellent performance (92.5%) in removing NOR, which maintained 70% degradation after four cycles. The main active substance of the NCBN was •O2-, and the possible degradation pathways are provided. This work will provide a theoretical basis for the construction of heterojunction photo-catalysts.
Collapse
Affiliation(s)
- Yi Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Wenyu Wang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Lei Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Huifang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xi Lu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Hongfang Ma
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhibao Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
3
|
Xiong Y, Dai X, Liu Y, Du C, Yu G, Xia Y. Insights into highly effective catalytic persulfate activation on oxygen-functionalized mesoporous carbon for ciprofloxacin degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:59013-59026. [PMID: 35380323 DOI: 10.1007/s11356-022-19670-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Nanocarbons have been demonstrated as promising carbon catalysts for substituting metal-based catalysts for the green treatment of wastewater. In this study, oxygen-functionalized mesoporous carbon (OCMK-3) was prepared by wet oxidation and exhibited high catalytic performance against ciprofloxacin (CIP) by activation of persulfate. The effects of environmental parameters (pH, temperature, coexisting ions) and process parameters (temperature, sodium persulfate concentration, catalyst agent dosage, initial concentration) on the removal of CIP were investigated. Compared with the pristine ordered mesoporous carbon (CMK-3), the removal efficiency of CIP by OCMK-3 was increased by 32% under optimal conditions. This rise in activity was attributed to the increase in oxygen-containing functional groups, porosity, and specific surface area of OCMK-3 with improved structural defects and electron transfer efficiency. Furthermore, based on active species scavenging experiments, a dual-pathway mechanism of the radical and nonradical pathways was discovered. The rational degradation pathway of CIP was investigated based on liquid chromatography-mass spectrometry (LC-MS). In addition, the OCMK-3/PS system exhibited high decomposition efficiency in pharmaceutical wastewater treatment. This study provides an in-depth mechanism for the degradation of organic pollutants by carbon-based PS-AOPs and provides theoretical support for further studies.
Collapse
Affiliation(s)
- Ying Xiong
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, 410114, Hunan, China
| | - Xiaolei Dai
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| | - Yuanyuan Liu
- Research Center of Resource Environment and Urban Planning, Changsha University of Science and Technology, Changsha, 410114, Hunan, China.
| | - Chunyan Du
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, China
| | - Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha, 410114, China
- Engineering and Technical Center of Hunan Provincial Environmental Protection for River-Lake Dredging Pollution Control, Changsha, 410114, China
| | - Yan Xia
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, 410114, China
| |
Collapse
|