1
|
Mokale Kognou AL, Ngono Ngane RA, Jiang ZH, Xu CC, Qin W, Inui H. Harnessing the power of microbial consortia for the biodegradation of per- and polyfluoroalkyl substances: Challenges and opportunities. CHEMOSPHERE 2025; 374:144221. [PMID: 39985997 DOI: 10.1016/j.chemosphere.2025.144221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/03/2025] [Accepted: 02/11/2025] [Indexed: 02/24/2025]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that pose significant risks to human health and ecosystems owing to their widespread use and resistance to degradation. This study examines the potential of microbial consortia as a sustainable and effective strategy for biodegrading PFAS. It highlights how these complex communities interact with various PFAS, including perfluorocarboxylic acids, perfluorosulfonic acids, fluorotelomer alcohols, and fluorotelomer-based precursors. Despite the potential of microbial consortia, several challenges impede their application in PFAS remediation, including effective microbial species identification, inherent toxicity of PFAS compounds, co-contaminants, complications from biofilm formation, diversity of environmental matrices, and competition with native microbial populations. Future research should focus on refining characterization techniques to enhance our understanding of microbial interactions and functions within consortia. Integrating bioinformatics and system biology will enable a comprehensive understanding of microbial dynamics and facilitate the design of tailored consortia for specific PFAS compounds. Furthermore, field applications and pilot studies are essential for assessing the real-world effectiveness of microbial remediation strategies. Ultimately, advancing our understanding and methodologies will lead to efficient biodegradation processes and positioning microbial consortia as viable solutions for PFAS-contaminated environments.
Collapse
Affiliation(s)
- Aristide Laurel Mokale Kognou
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Hyogo, Kobe, 657-8501, Japan; Department of Biology, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Rosalie Anne Ngono Ngane
- Laboratory of Biochemistry, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Zi-Hua Jiang
- Department of Chemistry, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Charles Chunbao Xu
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region
| | - Wensheng Qin
- Department of Biology, Lakehead University, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Hideyuki Inui
- Biosignal Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Hyogo, Kobe, 657-8501, Japan; Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo, 657-8501, Japan.
| |
Collapse
|
2
|
Wu C, Li M. Enriching fluorotelomer carboxylic acids-degrading consortia from sludges and soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177823. [PMID: 39667157 DOI: 10.1016/j.scitotenv.2024.177823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Fluorotelomer carboxylic acids (FTCAs) has drawn increasing attention due to their prevalent occurrence, high toxicity, and bioaccumulating effects. In this study, microbial consortia with sustainable FTCA removal abilities were enriched and characterized from two activated sludges and five soils when no external carbon sources were supplemented. After four generations of enrichment, stable 6:2 FTCA and 5:3 FTCA biodegradation were achieved, reaching 0.72-0.98 and 0.53-1.05 μM/day, respectively. Coupling with 6:2 FTCA biotransformation, fluoride release co-occurred, conducive to approximate 0.19 fluoride per 6:2 FTCA molecule that was biodegraded. In contrast, minimal free fluoride was detected in 5:3 FTCA-amended consortia, indicating the dominance of "non-fluoride releasing pathways". Microbial community analysis revealed the dominance of 13 genera across all consortia. Among them, 3 genera, including Hyphomicrobium, Methylorubrum, and Achromobacter, were found more enriched in consortia amended with 6:2 FTCA than those with 5:3 FTCA from an identical inoculation source, suggesting their involvement in biodefluorination. This study uncovered that microbial consortia can degrade FTCAs without the supplementation of external carbon sources, though with low biotransformation and biodefluorination rates. Further research is underscored to investigate the involved biotransformation pathways and biodefluorination mechanisms, as well as effects of external carbon sources.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
3
|
Niu Q, Lin X, Zheng X, Wu Y, Long M, Chen Y. Aerobic or anaerobic? Microbial degradation of per- and polyfluoroalkyl substances: A review. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136173. [PMID: 39467433 DOI: 10.1016/j.jhazmat.2024.136173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/17/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024]
Abstract
The widespread utilization of per- and polyfluoroalkyl substances (PFASs) as "forever chemicals" is posing significant environmental risks and adverse effects on human health. Microbial degradation (e.g., bacteria and fungi) has been identified as a cost-effective and environmentally friendly method for PFAS degradation. However, its degradation efficiency, biotransformation pathway, and microbial mechanism vary significantly under aerobic and anaerobic conditions. This review provides a comprehensive overview of the similarities and differences in PFAS microbial degradation by bacteria and fungi under different oxygen conditions. Initially, the efficiencies and metabolites of PFAS microbial degradation were compared under aerobic and anaerobic conditions, including perfluorinated and polyfluorinated compounds. Additionally, the microbial mechanisms of PFAS microbial degradation were obtained by summarizing key degrading microbes and enzymes. Finally, the comparisons between aerobic and anaerobic conditions in PFAS microbial degradation were provided, addressing the main challenges and proposing future research directions focused on seeking combined biodegradation techniques, exploring novel microbial species capable of degrading PFAS, and confirming complete biodegradation pathways. The understanding of PFAS microbial degradation in aerobic and anaerobic environments is crucial for providing potential solutions and future research efforts in dealing with these "forever chemicals".
Collapse
Affiliation(s)
- Qiuqi Niu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xinrong Lin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Key Laboratory of Yangtze River Water Environment, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| | - Min Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
4
|
Bhardwaj S, Lee M, O'Carroll D, McDonald J, Osborne K, Khan S, Pickford R, Coleman N, O'Farrell C, Richards S, Manefield MJ. Biotransformation of 6:2/4:2 fluorotelomer alcohols by Dietzia aurantiaca J3: Enzymes and proteomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135510. [PMID: 39178776 DOI: 10.1016/j.jhazmat.2024.135510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 07/12/2024] [Accepted: 08/12/2024] [Indexed: 08/26/2024]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are recalcitrant synthetic organohalides known to negatively impact human health. Short-chain fluorotelomer alcohols are considered the precursor of various perfluorocarboxylic acids (PFCAs) in the environment. Their ongoing production and widespread detection motivate investigations of their biological transformation. Dietzia aurantiaca strain J3 was isolated from PFAS-contaminated landfill leachate using 6:2 fluorotelomer sulphonate (6:2 FTS) as a sulphur source. Resting cell experiments were used to test if strain J3 could transform fluorotelomer alcohols (6:2 and 4:2 FTOH). Strain J3 transformed fluorotelomer alcohols into PFCAs, polyfluorocarboxylic acids and transient intermediates. Over 6 days, 80 % and 58 % of 6:2 FTOH (0.1 mM) and 4:2 FTOH (0.12 mM) were degraded with 6.4 % and 14 % fluoride recovery respectively. Fluorotelomer unsaturated carboxylic acid (6:2 FTUCA) was the most abundant metabolite, accounting for 21 to 30 mol% of 6:2 FTOH (0.015 mM) applied on day zero. Glutathione (GSH) conjugates of 6:2/4:2 FTOH and 5:3 FTCA adducts were also structurally identified. Proteomics studies conducted to identify enzymes in the biotransformation pathway have revealed the role of various enzymes involved in β oxidation. This is the first report of 6:2/4:2 FTOH glutathione conjugates and 5:3 FTCA adducts in prokaryotes, and the first study to explore the biotransformation of 4:2 FTOH by pure bacterial strain.
Collapse
Affiliation(s)
- Shefali Bhardwaj
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Matthew Lee
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Denis O'Carroll
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - James McDonald
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Keith Osborne
- Environment Protection Science, NSW Department of Climate Change, Energy, the Environment and Water, Lidcombe, NSW 2141, Australia
| | - Stuart Khan
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Russell Pickford
- UNSW Mark Wainwright Analytical Centre, UNSW, Sydney, NSW 2052, Australia
| | - Nicholas Coleman
- School of Life and Environmental Sciences, University of Sydney, NSW 2006, Australia
| | | | | | - Michael J Manefield
- UNSW Water Research Centre, School of Civil and Environmental Engineering, UNSW, Sydney, NSW 2052, Australia.
| |
Collapse
|
5
|
Wu C, Goodrow S, Chen H, Li M. Distinctive biotransformation and biodefluorination of 6:2 versus 5:3 fluorotelomer carboxylic acids by municipal activated sludge. WATER RESEARCH 2024; 254:121431. [PMID: 38471201 DOI: 10.1016/j.watres.2024.121431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/04/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Fluorotelomer carboxylic acids (FTCAs) represent an important group of per- and polyfluoroalkyl substances (PFAS) given their high toxicity, bioaccumulation potential, and frequent detection in landfill leachates and PFAS-impacted sites. In this study, we assessed the biodegradability of 6:2 FTCA and 5:3 FTCA by activated sludges from four municipal wastewater treatment plants (WWTPs) in the New York Metropolitan area. Coupling with 6:2 FTCA removal, significant fluoride release (0.56∼1.83 F-/molecule) was evident in sludge treatments during 7 days of incubation. Less-fluorinated transformation products (TPs) were formed, including 6:2 fluorotelomer unsaturated carboxylic acid (6:2 FTUCA), perfluorohexanoic acid (PFHxA), perfluoropentanoic acid (PFPeA), and perfluorobutanoic acid (PFBA). In contrast, little fluoride (0.01∼0.09 F-/molecule) was detected in 5:3 FTCA-dosed microcosms, though 25∼68% of initially dosed 5:3 FTCA was biologically removed. This implies the dominance of "non-fluoride-releasing pathways" that may contribute to the formation of CoA adducts or other conjugates over 5:3 FTCA biotransformation. The discovery of defluorinated 5:3 FTUCA revealed the possibility of microbial attacks of the C-F bond at the γ carbon to initiate the transformation. Microbial community analysis revealed the possible involvement of 9 genera, such as Hyphomicrobium and Dechloromonas, in aerobic FTCA biotransformation. This study unraveled that biotransformation pathways of 6:2 and 5:3 FTCAs can be divergent, resulting in biodefluorination at distinctive degrees. Further research is underscored to uncover the nontarget TPs and investigate the involved biotransformation and biodefluorination mechanisms and molecular basis.
Collapse
Affiliation(s)
- Chen Wu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Sandra Goodrow
- Division of Science and Research, New Jersey Department of Environmental Protection, Trenton, NJ, United States
| | - Hao Chen
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States
| | - Mengyan Li
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ, United States.
| |
Collapse
|
6
|
Saha B, Ateia M, Fernando S, Xu J, DeSutter T, Iskander SM. PFAS occurrence and distribution in yard waste compost indicate potential volatile loss, downward migration, and transformation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:657-666. [PMID: 38312055 DOI: 10.1039/d3em00538k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
We discovered high concentrations of PFAS (18.53 ± 1.5 μg kg-1) in yard waste compost, a compost type widely acceptable to the public. Seventeen out of forty targeted PFAS, belonging to six PFAS classes were detected in yard waste compost, with PFCAs (13.51 ± 0.99 μg kg-1) and PFSAs (4.13 ± 0.19 μg kg-1) being the dominant classes, comprising approximately 72.5% and 22.1% of the total measured PFAS. Both short-chain PFAS, such as PFBA, PFHxA, and PFBS, and long-chain PFAS, such as PFOA and PFOS, were prevalent in all the tested yard waste compost samples. We also discovered the co-occurrence of PFAS with low-density polyethylene (LDPE) and polyethylene terephthalate (PET) plastics. Total PFAS concentrations in LDPE and PET separated from incoming yard waste were 7.41 ± 0.41 μg kg-1 and 1.35 ± 0.1 μg kg-1, which increased to 8.66 ± 0.81 μg kg-1 in LDPE and 5.44 ± 0.56 μg kg-1 in PET separated from compost. An idle mature compost pile revealed a clear vertical distribution of PFAS, with the total PFAS concentrations at the surface level approximately 58.9-63.2% lower than the 2 ft level. This difference might be attributed to the volatile loss of short-chain PFCAs, PFAS's downward movement with moisture, and aerobic transformations of precursor PFAS at the surface.
Collapse
Affiliation(s)
- Biraj Saha
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Mohamed Ateia
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - Sujan Fernando
- Department of Civil and Environmental Engineering, Clarkson University, Potsdam, New York 13699, USA
| | - Jiale Xu
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
| | - Thomas DeSutter
- Department of Soil Science, North Dakota State University, Fargo, North Dakota 58108, USA
| | - Syeed Md Iskander
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58102, USA.
- Environmental and Conservation Sciences, North Dakota State University, 1410 14th Ave N, CIE 201, Fargo, North Dakota 58108, USA
| |
Collapse
|
7
|
Phelps D, Parkinson LV, Boucher JM, Muncke J, Geueke B. Per- and Polyfluoroalkyl Substances in Food Packaging: Migration, Toxicity, and Management Strategies. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:5670-5684. [PMID: 38501683 PMCID: PMC10993423 DOI: 10.1021/acs.est.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
PFASs are linked to serious health and environmental concerns. Among their widespread applications, PFASs are known to be used in food packaging and directly contribute to human exposure. However, information about PFASs in food packaging is scattered. Therefore, we systematically map the evidence on PFASs detected in migrates and extracts of food contact materials and provide an overview of available hazard and biomonitoring data. Based on the FCCmigex database, 68 PFASs have been identified in various food contact materials, including paper, plastic, and coated metal, by targeted and untargeted analyses. 87% of these PFASs belong to the perfluorocarboxylic acids and fluorotelomer-based compounds. Trends in chain length demonstrate that long-chain perfluoroalkyl acids continue to be found, despite years of global efforts to reduce the use of these substances. We utilized ToxPi to illustrate that hazard data are available for only 57% of the PFASs that have been detected in food packaging. For those PFASs for which toxicity testing has been performed, many adverse outcomes have been reported. The data and knowledge gaps presented here support international proposals to restrict PFASs as a group, including their use in food contact materials, to protect human and environmental health.
Collapse
Affiliation(s)
- Drake
W. Phelps
- Independent
Consultant, Raleigh, North Carolina 27617, United States
| | | | | | - Jane Muncke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| | - Birgit Geueke
- Food
Packaging Forum Foundation, 8045 Zürich, Switzerland
| |
Collapse
|
8
|
Berhanu A, Mutanda I, Taolin J, Qaria MA, Yang B, Zhu D. A review of microbial degradation of per- and polyfluoroalkyl substances (PFAS): Biotransformation routes and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160010. [PMID: 36356780 DOI: 10.1016/j.scitotenv.2022.160010] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 10/26/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Since the 1950s, copious amounts of per- and polyfluoroalkyl substances (PFAS) (dubbed "forever chemicals") have been dumped into the environment, causing heavy contamination of soil, surface water, and groundwater sources. Humans, animals, and the environment are frequently exposed to PFAS through food, water, consumer products, as well as waste streams from PFAS-manufacturing industries. PFAS are a large group of synthetic organic fluorinated compounds with widely diverse chemical structures that are extremely resistant to microbial degradation. Their persistence, toxicity to life on earth, bioaccumulation tendencies, and adverse health and ecological effects have earned them a "top priority pollutant" designation by regulatory bodies. Despite that a number of physicochemical methods exist for PFAS treatment, they suffer from major drawbacks regarding high costs, use of high energy and incomplete mineralization (destruction of the CF bond). Consequently, microbial degradation and enzymatic treatment of PFAS are highly sought after as they offer a complete, cheaper, sustainable, and environmentally friendly alternative. In this critical review, we provide an overview of the classification, properties, and interaction of PFAS within the environment relevant to microbial degradation. We discuss latest developments in the biodegradation of PFAS by microbes, transformation routes, transformation products and degradative enzymes. Finally, we highlight the existing challenges, limitations, and prospects of bioremediation approaches in treating PFAS and proffer possible solutions and future research directions.
Collapse
Affiliation(s)
- Ashenafi Berhanu
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China; Haramaya Institute of Technology, Department of Chemical Engineering, Haramaya University, Dire Dawa, Ethiopia
| | - Ishmael Mutanda
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Ji Taolin
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Majjid A Qaria
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Bin Yang
- Bioproducts, Sciences and Engineering Laboratory, Department of Biological Systems Engineering, Washington State University, Richland, WA 99354, USA
| | - Daochen Zhu
- Biofuels Institute, School of Environmental and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
9
|
Ma C, Peng H, Chen H, Shang W, Zheng X, Yang M, Zhang Y. Long-term trends of fluorotelomer alcohols in a wastewater treatment plant impacted by textile manufacturing industry. CHEMOSPHERE 2022; 299:134442. [PMID: 35346737 DOI: 10.1016/j.chemosphere.2022.134442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 06/14/2023]
Abstract
Fluorotelomer alcohols (FTOHs) are important precursors and substitutes of perfluoroalkyl carboxylic acids (PFCAs). This study investigated the long-term trends of FTOHs in a municipal wastewater treatment plant impacted by textile manufacturing industry (T-WWTP) in Wuxi city from 2013 to 2021. For comparison, four domestic wastewater treatment plants (D-WWTPs) were also selected for the investigation. The total concentrations of FTOHs, which were 9.8-43 ng/L, 5.9-29 ng/L and 10-50 ng/g in influent, secondary effluent, and sludge samples from the T-WWTP, were significantly higher than those of the D-WWTPs (p < 0.01). The significant correlation between decrease of mass loads for FTOHs and the increase for PFCAs was observed, suggesting the potential biotransformation of FTOHs to PFCAs. Concentration variation in FTOH concentrations was observed for the T-WWTP, which was in accord with the variation in annual output of textile products in Wuxi city (p = 0.005). The predominance of 8:2 FTOH in the influents of T-WWTP between 2013 and 2016 switched over to 6:2 FTOH in 2020-2021. This work highlighted the textile manufacturing industry as a significant discharge route for FTOHs to municipal WWTP, as well as the dramatic change in the usage of FTOHs in the textile manufacturing industry in Wuxi.
Collapse
Affiliation(s)
- Chunmeng Ma
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hui Peng
- Department of Chemistry, University of Toronto, Toronto, Ontario, M5S3H6, Canada
| | - Hongrui Chen
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Shang
- North China Municipal Engineering Design and Research Institute Co. Ltd, Tianjin, 300074, China
| | - Xingcan Zheng
- North China Municipal Engineering Design and Research Institute Co. Ltd, Tianjin, 300074, China
| | - Min Yang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|