1
|
Cui S, Ji S, Zhao W, Wan L, Li YY. Stoichiometric analysis and control strategy of partial nitrification for treating dewatering liquid from food-waste methane fermentation. WATER RESEARCH 2025; 276:123255. [PMID: 39955789 DOI: 10.1016/j.watres.2025.123255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 01/26/2025] [Accepted: 02/07/2025] [Indexed: 02/18/2025]
Abstract
Methane fermentation is critical for food-waste management; however, effective treatment of its high-ammonium dewatering liquid remains a major challenge. Anammox, a promising candidate for liquid treatment, requires effective pretreatment, such as partial nitrification (PN), to reduce ammonium and generate sufficient nitrite to optimize efficiency. In this study, an airlift reactor was employed to process the dewatering liquid from food-waste methane fermentation. Stable operation for over 360 days demonstrated its feasibility under high-load conditions. By implementing precise aeration control strategy to stabilize the ammonium removal efficiency (ARE = 50.2-57.1 %), a detailed summary of the optimal operational parameter ranges (consumed inorganic carbon [ΔIC] 1000-1160 mg C/L, effluent [Eff.] IC 282-378 mg C/L, pH 8.05-8.17, Eff. Alkalinity 1000-1350 mg CaCO3/L, free ammonia 61.9-82.5 mg/L, and free nitrous acid 47.6-71.1 μg/L) were provided under the ideal NO2⁻/NH4⁺ ratio of 1.1-1.3. Additionally, variations in ammonium oxidizing bacteria activity with temperature and pH were analyzed by the Arrhenius, cardinal temperature model with inflection, and Haldane models, with R2 values of 0.998, 0.975, and 0.999, respectively. Results suggest that the optimal conditions for partial nitrification were identified as a temperature range of 20-40 °C and a pH range of 7.5-8.5. Microbial sequencing reveals Nitrosomonas markedly enriched during operation, with its abundance rising from 3.67 % to 9.76 % as the NLR increased. Notably, NOB was nearly undetectable throughout the entire process. Additionally, an advanced aeration-based control mechanism with a positive feedback loop were proposed, which allows the airlift PN reactor to effectively treat high-ammonia dewatering liquid, thereby providing a suitable influent for subsequent anammox and offering crucial theoretical insights for future controlling pilot-scale system operation.
Collapse
Affiliation(s)
- Shen Cui
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Shenghao Ji
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Wenzhao Zhao
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan
| | - Liguo Wan
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; School of Municipal and Environmental Engineering, Changchun Institute of Technology, Changchun 130012, Jilin, , PR China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza, Aramaki, Aoba-ku, Sendai, Miyagi 980-8579, Japan; Department of Frontier Science for Advanced Environment, Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki-Aza, Aoba-ku, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
2
|
Ran X, Wang T, Zhou M, Li Z, Wang H, Tsybekmitova GT, Guo J, Wang Y. A Novel Perspective on the Instability of Mainstream Partial Nitrification: The Niche Differentiation of Nitrifying Guilds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:8922-8938. [PMID: 40294427 DOI: 10.1021/acs.est.5c01214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Short-cut biological nitrogen removal (sBNR) favors the paradigm shift toward energy-positive and carbon-neutral wastewater treatment processes. Partial nitrification (PN) is a key approach to provide nitrite for anammox or denitritation during sBNR, and its stability is the precondition for achieving robust nitrogen removal performance. However, maintaining a stable mainstream PN process has been a long-standing challenge. This review analyzes the mainstream PN process from a microbial ecology perspective, focusing on the niche differentiation among nitrifiers. First, we propose that mainstream PN systems are ecologically unstable, and the failure of the mainstream PN process due to the reactivation of nitrite-oxidizing bacteria (NOB) can be regarded as a behavior to restore system stabilization. Thus, maintaining mainstream PN systems primarily relies on enhancing the niche differentiation between ammonia-oxidizing bacteria (AOB) and NOB. We then summarize the realized niches of indigenous nitrifiers within nitrification systems and discuss their ecophysiological characteristics (e.g., cell structure and substrate affinity) that define their specific ecological niches. By comparing the niche breadths of AOB and NOB on various niche axes, we further discuss their niche differentiation and identify the different responses of AOB (resistance) and NOB (resilience) to exogenous perturbations. Finally, we propose outlook for achieving a stable mainstream PN process through an ecological lens. This review provides ecological insights into the instability of the mainstream PN process, which is intended to guide the derivation of optimized strategies from a single-factor approach to integrated solutions.
Collapse
Affiliation(s)
- Xiaochuan Ran
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Tong Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Mingda Zhou
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Zibin Li
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Han Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Gazhit Ts Tsybekmitova
- Institute of Natural Resources, Ecology and Cryology, Siberian Branch of Russian Academy Science, Nedorezova, 16a, Chita 672014, Russian Federation
| | - Jianhua Guo
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Yayi Wang
- State Key Laboratory of Water Pollution Control and Green Resources Recycling, Shanghai Institute of Pollution Control and Ecological Security, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| |
Collapse
|
3
|
Yang P, Wang Z, Zhang C, Zhu J, Peng Y. Engineering application on the combination of simultaneous partial nitrification and denitrification and anammox for advanced nitrogen removal from landfill leachate. BIORESOURCE TECHNOLOGY 2025; 423:132257. [PMID: 39971102 DOI: 10.1016/j.biortech.2025.132257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 02/21/2025]
Abstract
The engineering application of continuous-flow process for advanced nitrogen removal from landfill leachate via anammox is at the forefront of landfill leachate treatment field. For the full-scale engineering renovation, the anaerobic + pre-aeration + anammox + MBR process was constructed for advanced nitrogen removal from landfill leachate of 150 m3/d. Under the strategy of aeration control and low reflux ratio, a stable operation of simultaneous partial nitrification and denitrification (SPND) and anammox was achieved. Without carbon sources addition, the nitrogen removal efficiency reached 94.07 ± 1.26 %, of which the nitrogen removal contribution of the SPND and anammox process reached 64.12 ± 0.92 % and 26.46 ± 1.10 %, respectively. The anammox bacteria mainly enriched in sponge biofilm and floc sludge with abundant reached 2.57 % and 2.17 %, respectively. Compared with the original process, the renovated process could significantly save 18.51 % of the treatment consumption. This study provided a practical and feasible approach for the renovation of the existing treatment process.
Collapse
Affiliation(s)
- Pei Yang
- Harbin Institute of Technology, Harbin 150090, PR China; Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Zhaozhi Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Chenguang Zhang
- Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Jinxing Zhu
- Beijing Environmental Engineering Technology Co, Ltd, Beijing 100101, PR China
| | - Yongzhen Peng
- Harbin Institute of Technology, Harbin 150090, PR China; National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
4
|
Jia C, Li J, Li Z, Zhang L. Influence of high-load shocks on achieving mainstream partial nitrification: Microbial community succession. WATER RESEARCH X 2025; 27:100304. [PMID: 39911734 PMCID: PMC11794177 DOI: 10.1016/j.wroa.2025.100304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/24/2024] [Accepted: 01/12/2025] [Indexed: 02/07/2025]
Abstract
Driving microbial community succession through the regulation of operational strategies is crucial for achieving partial nitrification (PN) in municipal wastewater. However, at present, there is a decoupling between the strategic regulation of PN systems and the succession characteristics of the microbial community. This study examined the correlation between microbial community succession and PN performance under two high-load shocks (HLS1 and HLS2) treating actual sewage. During HLS1, the influent organic loading rate (OLR) and nitrogen loading rate (NLR) increased from 116.7 ± 37.7 to 219.7 ± 24.7 mg COD/(g VSS·d) and 0.21±0.02 to 0.33±0.02 kg N/m3/d respectively, with the nitrite concentration and nitrite accumulation ratio only reaching 11.7 ± 2.7 mg/L and 49.3 ± 13.9 %, respectively. During HLS2, the influent OLR and NLR increased from 123.5 ± 17.2 to 300.3 ± 49.2 mg COD/(g VSS·d) and 0.19±0.03 to 0.32±0.03 kg N/m3/d respectively, resulting in a nitrite accumulation ratio of 89.4 ± 10.7 %. The system achieved efficient PN performance and sustained for 124 days. High-throughput sequencing results showed that community diversity remained consistently high, and the community composition returned to its initial state following a minor succession during HLS1. During HLS2, the high-load shock reduced the richness and evenness of the microbial community. The community underwent succession in a new direction, leading to community composition and function changes. The results indicate that the realization, stabilization, and disruption of PN are influenced not only by operational parameters but also by microbial community structure.
Collapse
Affiliation(s)
- Chenjie Jia
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Jialin Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Zhaoyang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| | - Liang Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing, 100124, PR China
| |
Collapse
|
5
|
Yu H, Jia W, Luo Y, Zhang R, Zhao J, Lu C, Dong Y, Shuo Han, Li B, Qu C. Accelerating enrichment of ARGs and MGEs with increasing ammonium removal during partial nitrification treating high-strength ammonia wastewater. ENVIRONMENTAL RESEARCH 2025; 278:121657. [PMID: 40258466 DOI: 10.1016/j.envres.2025.121657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 04/17/2025] [Accepted: 04/19/2025] [Indexed: 04/23/2025]
Abstract
Free ammonia (FA) and free nitrous acid (FNA) are critical operational parameters to maintain partial nitrification (PN) in treating high-strength ammonia wastewater. However, whether FA and FNA, as non-antibiotic antimicrobial chemicals, could directly enhance antibiotic resistance genes (ARGs) enrichment during PN is still unclear. This study deciphered the prevalence of ARGs, potential mobility, and hosts under different ammonium removal efficiencies (ARE) (different FA and FNA) during stable PN. The results showed that when ARE increased from 52.2 ± 6.2 % to 91.8 ± 3.3 %, total abundances of ARGs and mobile gene elements (MGEs) were stepwise increased. In particular, four types of ARGs (aminoglycoside, bacitracin, peptide, and sulfonamide) and six subtypes of ARGs (bacA, ugd, sul2, baeR, aph(3")-I and aph(6)-I) increased with the increasing ARE. Under selection pressures of FA and FNA, plasmids tended to encode aminoglycoside and MLS, while chromosomes had a tendency to carry multidrug, bacitracin, peptide, and fosmidomycin. Furthermore, FA and FNA enhanced the spread of ARGs mediated by the dominated transposase and recombinase. Nitrosomonas dominated the host of ARGs co-occurring with MGEs during the operation of PN. This study highlights the effect of FA and FNA on ARGs and provides theoretical support for the control of ARGs in biological nitrogen removal processes via nitrite pathway.
Collapse
Affiliation(s)
- Heng Yu
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Weiyi Jia
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Yuqiu Luo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Rong Zhang
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Junkai Zhao
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Cong Lu
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Yue Dong
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Shuo Han
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| | - Bing Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Chengtun Qu
- State Key Laboratory of Petroleum Pollution Control, Xi'an Shiyou University, Xi'an, China; Shaanxi Province Key Laboratory of Environmental Pollution Control and Reservoir Protection Technology of Oilfields, Xi'an Shiyou University, Xi'an, China
| |
Collapse
|
6
|
Li S, Yang H. Optimizing denitrification with volatile fatty acids from hydrolysis acidification-treated domestic wastewater: Comparative effects of nitrate and nitrite using immobilized biofiller. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 378:124812. [PMID: 40043563 DOI: 10.1016/j.jenvman.2025.124812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/29/2024] [Accepted: 03/01/2025] [Indexed: 03/16/2025]
Abstract
By embedding immobilized biofiller, 100% denitrification efficiency was achieved with nitrate or nitrite as electron acceptors utilizing volatile fatty acids (VFAs) from domestic wastewater after hydrolysis acidification. The consumption patterns of VFAs by functional bacteria and differences in nitrogen metabolic gene expression were thoroughly analyzed. Total consumption of acetic and propionic acids with >95% VFAs utilization was achieved utilizing nitrate, whereas the consumption of butyric and valeric acids was enhanced utilizing nitrite. Denitrification-related genes were all upregulated, particularly nosZ, indicating systemic N2O emission reduction potential. Electron acceptor changes dynamically shifted microbial dominance from Thauera (19.4%) to Thiobacillus (7.2%). These results provide valuable insights into the adaptability and ecological niche characterization of denitrifying bacteria, contributing to improving nitrogen removal efficiency, optimizing carbon source utilization, and reducing sludge production.
Collapse
Affiliation(s)
- Siqi Li
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hong Yang
- Key Laboratory of Beijing for Water Quality Science and Water Environmental Recovery Engineering, College of Architectural Engineering, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
7
|
Du Z, Du Y, Wang J, Zhang Y, Lu H, Zhang F, Peng Y. Acidophilic partial nitrification rapid startup and robustness validation for municipal wastewater treatment: Operation performance and microorganism insights. WATER RESEARCH 2025; 272:122922. [PMID: 39657562 DOI: 10.1016/j.watres.2024.122922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/22/2024] [Accepted: 12/05/2024] [Indexed: 12/12/2024]
Abstract
Acidophilic partial nitrification (a-PN) is a promising short-flow nitrogen conversion biotechnology, but achieving a rapid startup remains a significant challenge. This study explored strategies for starting up a-PN in real municipal wastewater treatment using sequencing batch reactors (SBRs). The influent alkalinity-to-NH4+ molar ratio was maintained at 0.5-0.6 in the control reactor (SBRa), while other reactors were supplemented with sodium formate (150 mg COD/L, SBRb), hydroxylamine (5 mg/L, SBRc), and sludge alkaline fermentation liquid (NH4+-N=227.97±7.08 mg/L, COD=2463.98±125.17 mg/L, SBRd). Results indicated that the system using the composite strategy with sodium formate addition achieved a 93.7 % nitrite accumulation ratio (NAR) within just 4 days. Furthermore, stable a-PN performance was maintained in the systems without external substrate addition with pH ranging from 5.7 to 7.4. The established a-PN systems demonstrated robust performance, maintained a high NAR of 92.84 %-98.84 %, even under the intense impact of traditional nitrification biomass for 13 consecutive days. Although the relative abundances of Nitrosomonas and Nitrospira temporarily increased, traditional ammonia oxidizing bacteria and nitrite oxidizing bacteria were completely eliminated, falling to undetectable levels after long-term operation. Notably, amo and hao genes exhibited opposite trends: amo decreased significantly from 356 reads to 22-46 reads, while hao substantially increased by 186.6 %-613.1 %, from 626 reads to 1168-2838 reads. This suggests that hao may play a more crucial functional role in the a-PN process, and unidentified nitrifying communities may be driving acidophilic partial nitrification. Overall, our study advances the understanding of rapid startup strategies of a-PN and provides novel perspectives on the microbial structure and functional genes involved in a-PN system.
Collapse
Affiliation(s)
- Ziyi Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujia Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jiahui Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yujing Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hongying Lu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Fangzhai Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
8
|
Takeda PY, Paula CT, Dias MES, Borges ADV, Damianovic MHRZ. Achieving stable nitrogen removal through mainstream partial nitrification, anammox and denitrification (SNAD) with a hybrid biofilm-granular reactor. CHEMOSPHERE 2025; 372:144105. [PMID: 39800325 DOI: 10.1016/j.chemosphere.2025.144105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/17/2024] [Accepted: 01/09/2025] [Indexed: 01/18/2025]
Abstract
Simultaneous partial nitrification, anammox, and denitrification (SNAD) process offers a promising method for the effective removal of carbon and nitrogen from wastewater. However, ensuring stability is a challenge. This study investigated operational parameters such as hydraulic retention time (HRT) and biomass retention to stabilize SNAD operation, transitioning from synthetic to anaerobically pre-treated municipal wastewater (APMW) in an upflow hybrid biofilm-granular reactor (UHR). The incorporation of hybrid biomass in the form of biofilms and granules resulted in a significant improvement in ammonium oxidation, increasing the efficiency from 45% to 60%. This outcome underscores the significance of biomass retention as a crucial parameter in achieving optimal performance. Furthermore, extending the HRT resulted in a significant improved nitrogen removal, increasing it from 40% (8h) to 70% (12h), which was attributed to the enhanced specific activities of ammonium-oxidizing bacteria (AOB) and anammox bacteria (AnAOB). Microbial characterization unveiled the emergence of partial denitrifiers (Thauera genus) and the suppression of nitrite-oxidizing bacteria (NOB) (Nitrospira genus) at low aeration rates (0.35 L min-1.L-1reactor; estimated 0.5 mgDO.L-1). Notably, stable operation persisted throughout the experimental period, primarily due to the consistent nitrite supply from partial nitrification/denitrification. Our findings highlight the potential of innovative hybrid reactor configuration, for achieving stable and efficient SNAD performance in mainstream wastewater treatment.
Collapse
Affiliation(s)
- Paula Yumi Takeda
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil.
| | - Carolina Tavares Paula
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Maria Eduarda Simões Dias
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - André do Vale Borges
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| | - Márcia Helena Rissato Zamariolli Damianovic
- Biological Processes Laboratory (LPB), São Carlos School of Engineering (EESC), University of São Paulo (USP), Av. João Dagnone, 1100, Santa Angelina, São Carlos, São Paulo, 13563-120, Brazil
| |
Collapse
|
9
|
Wang T, Li X, Dan Q, Wang B, Wang H, Peng Y. Unraveling rapid start-up and stable maintenance of partial nitrification in domestic wastewater under high dissolved oxygen. BIORESOURCE TECHNOLOGY 2025; 418:131989. [PMID: 39694115 DOI: 10.1016/j.biortech.2024.131989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/10/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Partial nitrification (PN), is a promising nitrogen removal technology in wastewater treatment. Contrary to the dogma that low dissolved oxygen (DO) is more conducive to achieving PN, this study successfully established PN within 7 days under high DO conditions (> 6 mg/L). Ultra-stable PN was maintained over 143 days with an average nitrite accumulation ratio of 98 % treating real domestic wastewater. Kinetics indicated that the maximum activity difference increased to 40 folds between ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacterium (NOB), resulting in AOB prospering while NOB declined. High DO operation reshaped the nitrifier community with AOB genera relative abundance increased substantially (0.1 %-1.2 %), while the predominant NOB Nitrospira was below the detection limit. Batch test confirmed the reproducibility of this strategy to achieve PN using ordinary activated sludge. This study provides an update on developing a feasible approach for the rapid realization and stable maintenance of mainstream PN.
Collapse
Affiliation(s)
- Tong Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiongpeng Dan
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Bo Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - HanBin Wang
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Domestic Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
10
|
Deogratias UK, Jin D, Zhang X, Forde NAH, Bhrane GY, Jalloh MA, Wu P. Double-edged effects and regulation mechanism of hydroxylamine in novel nitrogen removal processes: A comprehensive review. JOURNAL OF WATER PROCESS ENGINEERING 2025; 69:106826. [DOI: 10.1016/j.jwpe.2024.106826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
11
|
Zhang Y, Wang W, Xu X, Zhang Q, Xing D, Lee DJ, Ren N, Chen C. Sulfur cycle-mediated biological nitrogen removal and greenhouse gas abatement processes: Micro-oxygen regulation tells the story. BIORESOURCE TECHNOLOGY 2024; 414:131614. [PMID: 39395607 DOI: 10.1016/j.biortech.2024.131614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 10/14/2024]
Abstract
Sulfur-mediated autotrophic biological nitrogen removal (BNR) processes favor the reduction of greenhouse gas (GHG) emissions compared to heterotrophic BNR processes. Micro-oxygen environments are widely prevalent in practical BNR systems, and the mechanisms of GHG emissions mediated by multi-elements, including nitrogen (N), sulfur (S), and oxygen (O), remain to be systematically summarized. This review reveals the functional microorganisms involved in sulfur-mediated BNR processes under micro-oxygen regulation, elucidating their metabolic mechanisms and interactions. The GHG abatement potential of sulfur-mediated BNR processes under micro-oxygen regulation is highlighted, along with recent advances in multi-scenario applications. The fate of GHG in wastewater treatment systems is explored and insights into future multi-scale GHG regulatory strategies are provided. Overall, the application of sulfur-mediated BNR processes under micro-oxygen regulation exhibits great potential. This review can act as a guide for the effective implementation of strategies to mitigate the environmental impacts of GHG emissions from wastewater treatment processes.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xijun Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Quan Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
12
|
Xu H, Wang S, Sun Y, Yu T, Yang H, Xu G. Enhancing nitrogen removal by simultaneous nitritation and denitritation in a multi-cycle SBR with supplementation of solid carbon sources. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:122672. [PMID: 39326074 DOI: 10.1016/j.jenvman.2024.122672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 08/30/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Simultaneous nitritation and denitritation have the potential to significantly improve nitrogen removal in sewage treatment processes. However, their application in low-strength sewage treatment systems presents challenges. This study explored the impact of four solid carbon sources (SCSs) on N-removal via nitrite in a multi-cycle SBR with biocarriers. Results showed that both N-removal efficiencies and nitrite accumulation rates increased with higher COD/N ratios, indicating that high COD/N ratios can improve the competition between denitrifiers and nitrite-oxidizing bacteria for nitrite, leading to stable simultaneous nitritation and denitritation. The supplementation of SCSs further enhanced this high-efficiency N-removal process, with polybutylene succinate (PBS) and polycaprolactone (PCL) showing greater increases in N-removal via nitrite than poly-hydroxybutyrate (PHB) and poly-hydroxyalkanoate (PHA). Moreover, PBS showed the most significant increase in denitrification efficiency in anoxic conditions, while PHA was the most effective external SCS at a moderate level of dissolved oxygen. These findings suggest that the incorporation of external SCSs can facilitate the simultaneous nitritation and denitrification process in multi-cycle SBRs, underscoring the importance of selecting an appropriate SCS for optimizing nitrogen removal in sewage treatment projects.
Collapse
Affiliation(s)
- Huchun Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Siya Wang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Yuxin Sun
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Ting Yu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Hui Yang
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China
| | - Guangjing Xu
- College of Marine Technology and Environment, Dalian Ocean University, Dalian, 116023, PR China; Key Laboratory of Nearshore Marine Environmental Science and Technology in Liaoning Province, Dalian Ocean University, Dalian, 116023, PR China.
| |
Collapse
|
13
|
Zhou W, Zhang Q, Wang B, Peng Y, Hou F, Pang H, Peng Y. Predicting aeration time and nitrite accumulation rate variations for Partial Nitritation: A model incorporating nitrogen oxidation rate dynamics. WATER RESEARCH 2024; 268:122615. [PMID: 39418798 DOI: 10.1016/j.watres.2024.122615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/25/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
This study aimed to develop a two-step nitrification model to predict variations in aeration time and nitrite accumulation rate (NAR) under fluctuating operational conditions in mainstream partial nitritation (PN) processes. Lab-scale sequencing batch reactors (SBRs) were used to evaluate the ammonia oxidation rate (AOR) and nitrite oxidation rate (NOR) under different solids retention times (SRT) (10, 15, 20, 30, and 50 days) and total volumetric nitrogen loadings (TVNL) (20-60 mg N/L per cycle). A static model was developed to predict consistent AOR and NOR values in the steady state, whereas a dynamic model was established to capture the growth dynamics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) under unsteady-state conditions. The static model accurately predicted the AOR, NOR, and aeration time at steady state. The dynamic model quantified the relationship between specific growth rates (μ) and food-to-microorganism ratios (F/M) through exponential fitting, successfully capturing AOB and NOB growth dynamics. Validation experiments (SRT = 10 d, TVNL = 60 mg/L per cycle) demonstrated the ability of the dynamic model to predict trends in NAR and aeration time accurately. This study emphasizes the importance of accurately modeling AOR and NOR variations to predict aeration time and NAR, thereby providing valuable insights for aeration control and precise management of AOB and NOB populations in mainstream PN processes.
Collapse
Affiliation(s)
- Wentao Zhou
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Bo Wang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yi Peng
- Beijing Xintong Bishui Reclaimed Water Co., Ltd., Beijing 101149, China
| | - Feng Hou
- Xinkai Environment Investment Co., Ltd., Beijing, 101101, China
| | - Hongtao Pang
- Xinkai Environment Investment Co., Ltd., Beijing, 101101, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China.
| |
Collapse
|
14
|
Mu M, Li D, Lin S, Bi H, Liu X, Wang Z, Qian C, Ji J. Insights into the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox: Nitrogen removal performance, enzyme activity and microbial community. CHEMOSPHERE 2024; 365:143308. [PMID: 39265735 DOI: 10.1016/j.chemosphere.2024.143308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/03/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
Anaerobic ammonium oxidation (anammox) is an efficient and economical nitrogen removal process for treating ammonium-rich industrial wastewaters. However, Cu(Ⅱ) and Ni(Ⅱ) present in industrial wastewaters are toxic to anaerobic ammonium-oxidizing bacteria (AnAOB). Unfortunately, the effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox have not been thoroughly investigated, especially when Cu(Ⅱ) and Ni(Ⅱ) coexist. This work comprehensively investigated the individual and combined effects of Cu(Ⅱ) and Ni(Ⅱ) on anammox and revealed the inhibitory mechanisms. With the influent NH4+-N and NO2--N concentration of 230 and 250 mg L-1, the inhibition thresholds on anammox are 2.00 mg L-1 Cu(Ⅱ), 1.00 mg L-1 Ni(Ⅱ) and 1.00 mg L-1 Cu(Ⅱ) + 1.00 mg L-1 Ni(Ⅱ), and higher Cu(Ⅱ) or Ni(Ⅱ) concentrations resulted in sharp deteriorations of nitrogen removal performance. The inhibition of Ni(Ⅱ) on anammox was mainly attributed to the adverse effect on NiR activity, while the inhibition mechanism of Cu(Ⅱ) seemed to be unrelated to the four functional enzymes, but associated with disruption of cellular and organellar membranes. The behavior of extracellular polymeric substances (EPS) contributed to the antagonistic effect between Cu(Ⅱ) and Ni(Ⅱ) on anammox. In addition, the niche of Candidatus Brocadia and Candidatus Jettenia shifted under the Cu(II) and Ni(II) stress, and Candidatus Jettenia displayed greater tolerance to Cu(II) and Ni(II) stress. In conclusion, this research clarified the combined effect and the inhibitory mechanism of multiple heavy metals on anammox, and provide the guidances for anammox process application in treating high-ammonium industrial wastewaters containing heavy metals.
Collapse
Affiliation(s)
- Minghao Mu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Dengzhi Li
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Shilin Lin
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China
| | - Haisong Bi
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Xinqiang Liu
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Zheng Wang
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Chengduo Qian
- Innovation Research Institute, Shandong Hi-speed Group, Jinan, 250001, China
| | - Junyuan Ji
- Key Lab of Marine Environment and Ecology of Ministry of Education, Ocean University of China, Qingdao, 266100, China.
| |
Collapse
|
15
|
Yan Z, Han X, Wang H, Jin Y, Song X. Influence of aeration modes and DO on simultaneous nitrification and denitrification in treatment of hypersaline high-strength nitrogen wastewater using sequencing batch biofilm reactor (SBBR). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121075. [PMID: 38723502 DOI: 10.1016/j.jenvman.2024.121075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.
Collapse
Affiliation(s)
- Zixuan Yan
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Haodi Wang
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yan Jin
- National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xingfu Song
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; National Engineering Research Center for Integrated Utilization of Salt Lake Resources, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
16
|
Fu K, Zhang X, Fan Y, Bian Y, Qiu F, Cao X. The enrichment characterisation of Nitrospira under high DO conditions. ENVIRONMENTAL TECHNOLOGY 2024; 45:2156-2170. [PMID: 36601901 DOI: 10.1080/09593330.2023.2165457] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Nitrite-oxidizing bacteria (NOB) are crucial to nitrification and nitrogen elimination in wastewater treatment. Mass reports exist on the links between NOB and other microorganisms, for instance, ammonia-oxidizing bacteria (AOB). However, a few studies exist on the enrichment characterisation of NOB under high dissolved oxygen (DO) conditions. In this study, NOB was designed to be enriched individually under high DO conditions in a continuous aeration sequencing batch reactor (SBR), and the kinetic characterisation of NOB was evaluated. The analysis revealed that the average NO2--N removal rate was steady above 98%, with DO and NO2--N being 3-5 mg L-1 and 50-450 mg L-1, respectively. The NO2--N removal efficiency of the system was significantly enhanced and better than in other studies. The high-throughput sequencing suggested that Parcubacteria_ genera_incertae_sedis was the first dominant genus (21.99%), which often appeared in the NOB biological community with Nitrospira. However, the dominant genus NOB was Nitrospira rather than Nitrobacter (8.49%). This result suggested that Nitrospira was capable of higher NO2--N removal. But lower relative abundance indicated that excessive NO2--N had an adverse effect on the enrichment and activity of Nitrospira. In addition, the nitrite half-saturation constant (KNO2) and the oxygen half-saturation constant (KO) were 1.71 ± 0.19 mg L-1 and 0.95 ± 0.10 mg L-1, respectively. These results showed that the enriched Nitrospira bacteria had different characteristics at the strain level, which can be used as a theoretical basis for wastewater treatment plant design and optimisation.
Collapse
Affiliation(s)
- Kunming Fu
- Key Laboratory of Urban Storm Water System and Water Environment Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xuemeng Zhang
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yang Fan
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Yihao Bian
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Fuguo Qiu
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| | - Xiuqin Cao
- School of Environment and Energy Engineering, Beijing University of Civil Engineering and Architecture, Beijing, People's Republic of China
| |
Collapse
|
17
|
Yang Z, Shi S, He X, Cao M, Lin H, Fu J, Zhou J. High-efficient nutrient removal in a single-stage electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) for low C/N sanitary sewage treatment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 351:119848. [PMID: 38113787 DOI: 10.1016/j.jenvman.2023.119848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/20/2023] [Accepted: 12/11/2023] [Indexed: 12/21/2023]
Abstract
To efficiently remove nutrients from low C/N sanitary sewage by conventional biological process is challenging due to the lack of sufficient electron donors. A novel electrolysis-integrated sequencing batch biofilm reactor (E-SBBR) was established to promote nitrogen and phosphorus removal for sanitary sewage with low C/N ratios (3.5-1.5). Highly efficient removal of nitrogen (>79%) and phosphorus (>97%) was achieved in the E-SBBR operating under alternating anoxic/electrolysis-anoxic/aerobic conditions. The coexistence of autotrophic nitrifiers, electron transfer-related bacteria, and heterotrophic and autohydrogenotrophic denitrifiers indicated synergistic nitrogen removal via multiple nitrogen-removing pathways. Electrolysis application induced microbial anoxic ammonia oxidation, autohydrogenotrophic denitrification and electrocoagulation processes. Deinococcus enriched on the electrodes were likely to mediate the electricity-driven ammonia oxidation which promoted ammonia removal. PICRUSt2 indicated that the relative abundances of key genes (hyaA and hyaB) associated with hydrogen oxidation significantly increased with the decreasing C/N ratios. The high autohydrogenotrophic denitrification rates during the electrolysis-anoxic period could compensate for the decreased heterotrophic rates resulting from insufficient carbon sources and nitrate removal was dramatically enhanced. Electrocoagulation with iron anode was responsible for phosphorus removal. This study provides insights into mechanisms by which electrochemically assisted biological systems enhance nutrient removal for low C/N sanitary sewage.
Collapse
Affiliation(s)
- Zhi Yang
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, China
| | - Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Xuejie He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Hong Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jiahao Fu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, China.
| |
Collapse
|
18
|
Zhang J, Zhang W, Bi X, Gao Z, Li Y, Miao Y. Increasing specific biomass nitrogen load facilitated nitrite accumulation in mainstream wastewater treatment. BIORESOURCE TECHNOLOGY 2023; 385:129337. [PMID: 37343795 DOI: 10.1016/j.biortech.2023.129337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/11/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
By regulating influent nitrogen loading rate (NLR) and solids retention time (SRT), the effect of specific biomass nitrogen load (BNL) on the start-up of mainstream partial nitrification (PN) was investigated in five parallel sequencing batch reactors inoculated with ordinary nitrification sludge. The results showed that increasing BNL by both methods could achieve nitrite accumulation. Moreover, a high initial activity of ammonium oxidizing bacteria (AOB) accelerated nitrite accumulation. Increasing influent NLR (ammonium: 55-70 mg N/L) achieved only 30%-40% of nitrite accumulation ratio (NAR) and gradually decreased with reactor operation. By increasing BNL via controlling SRT (30 days), desirable PN with an average NAR of 81.7 ± 4.4% (effluent nitrite: ∼10 mg N/L) was obtained. Nitrite oxidizing bacteria (NOB) were effectively inhibited, and the AOB to NOB activity ratio increased from 1.5 to 7.8, promoting efficient nitrite accumulation. Overall, increasing BNL by regulating SRT was a potential method for start-up of mainstream PN.
Collapse
Affiliation(s)
- Jianhua Zhang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Wenke Zhang
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China; Shandong Academy of Environmental Sciences Co., Ltd., Jinan 250013, PR China
| | - Xuejun Bi
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Zhongxiu Gao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yitong Li
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Qingdao 266520, PR China
| | - Yuanyuan Miao
- School of Environmental Science and Engineering, Qingdao University, Qingdao 266071, PR China.
| |
Collapse
|
19
|
Liu W, Song J, Wang J, Ji X, Shen Y, Yang D. Achieving robust nitritation in a modified continuous-flow reactor: From micro-granule cultivation to nitrite-oxidizing bacteria elimination. J Environ Sci (China) 2023; 124:117-129. [PMID: 36182122 DOI: 10.1016/j.jes.2021.11.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 06/16/2023]
Abstract
In this study, a modified continuous-flow nitrifying reactor was successfully operated for rapid cultivation of micro-granules and achieving robust nitritation. Results showed that sludge granulation with mean size of ca. 100 µm was achieved within three weeks by gradually increasing settling velocity-based selection pressure from 0.48 to 0.9 m/hr. Though Nitrospira like nitrite-oxidizing bacteria (NOB) were enriched in the micro-granules with a ratio between ammonia-oxidizing bacteria (AOB) and NOB of 5.7%/6.5% on day 21, fast nitritation was achieved within one-week by gradually increasing of influent ammonium concentration (from 50 to 200 mg/L). Maintaining ammonium in-excess was the key for repressing NOB in the micro-granules. Interestingly, when the influent ammonium concentration switched back to 50 mg/L still with the residual ammonium of 15-25 mg/L, the nitrite accumulation efficiency increased from 90% to 98%. Experimental results suggested that the NOB repression was intensified by both oxygen and nitrite unavailability in the inner layers of micro-granules. Unexpectedly, continuous operation with ammonium in excess resulted in overproduction of extracellular polysaccharides and overgrowth of some bacteria (e.g., Nitrosomonas, Arenimonas, and Flavobacterium), which deteriorated the micro-granule stability and drove the micro-granules aggregation into larger ones with irregular morphology. However, efficient nitritation was stably maintained with extremely high ammonium oxidation potential (> 50 mg/g VSS/hr) and nearly complete washout of NOB was obtained. This suggested that smooth and spherical granule was not a prerequisite for achieving NOB wash-out and maintaining effective nitritation in the granular reactor. Overall, the micro-granules exhibited a great practical potential for high-rate nitritation.
Collapse
Affiliation(s)
- Wenru Liu
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China.
| | - Jiajun Song
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Jianfang Wang
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Xiaoming Ji
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaoliang Shen
- National & Local Joint Engineering Laboratory for Municipal Sewage Resource Utilization Technology, Suzhou University of Science and Technology, Suzhou 215009, China; School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Dianhai Yang
- State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai 200092, China
| |
Collapse
|
20
|
Guthi RS, Tondera K, Gillot S, Buffière P, Boillot M, Chazarenc F. A-Stage process - Challenges and drawbacks from lab to full scale studies: A review. WATER RESEARCH 2022; 226:119044. [PMID: 36272198 DOI: 10.1016/j.watres.2022.119044] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
In response to the growing global resource scarcity, wastewater is increasingly seen as a valuable resource to recover and valorise for the benefit of the society rather than another waste that needs treatment before disposal. Conventional wastewater treatment plants (WWTPs) oxidise most of the organic matter present in wastewater, instead of recovering it as a feedstock for biomaterials or to produce energy in the form of biogas. In contrast, an A-Stage is capable of producing a concentrated stream of organic matter ready for valorisation, ideally suited to retrofit existing large plants. This technology is based on the principle of high-rate activated sludge process that favours biosorption and storage over oxidation. In this paper, we summarize peer-reviewed research of both pilot-scale and full-scale studies of A-Stage process under real conditions, highlighting key operational parameters. In the majority of published studies, the sludge retention time (SRT) was identified as a key operational parameter. An optimal SRT of 0.3 days seems to maximize the redirection of influent COD - up to 50% to the sludge flux, while simultaneously keeping mineralization under 25% of total influent COD. Other key optimal parameters are a hydraulic residence time of 30 min and dissolved oxygen levels of 0.5 mg⋅L-1. In addition, nutrient removal efficiencies of 15-27% for total nitrogen and 13-38% for total phosphorus are observed. Influence of mixing on settling efficiencies remain largely underexplored, as well as impact of wet weather flow and temperature on overall recovery efficiencies, which hinders to provide recommendations on these aspects. Evolution of modelling efforts of A-Stage process are also critically reviewed. The role of extracellular polymeric substances remain unclear and measures differ greatly according to the different studies and protocols. Better understanding the settling processes by adding Limit of Stokesian and Threshold of Flocculation measures to Sludge Volume Index could help to reach a better understanding of the A-Stage process. Reliable modelling can help new unit processes find their place in the whole treatment chain and help the transition from WWTPs towards Wastewater Resource Recovery Facilities.
Collapse
Affiliation(s)
- Raja-Sekhar Guthi
- INRAE, REVERSAAL, Villeurbanne F-69625, France; Saur, Direction Innovation Technologique, Maurepas 78310, France.
| | | | | | - Pierre Buffière
- INSA-Lyon, Laboratoire DEEP EA7429, Université de Lyon, 9 rue de la Physique, Villeurbanne 69621, France
| | - Mathieu Boillot
- Saur, Direction Innovation Technologique, Maurepas 78310, France
| | | |
Collapse
|
21
|
Wang C, Liu Y, Huang M, Xiang W, Wang Z, Wu X, Zan F, Zhou T. A rational strategy of combining Fenton oxidation and biological processes for efficient nitrogen removal in toxic coking wastewater. BIORESOURCE TECHNOLOGY 2022; 363:127897. [PMID: 36075350 DOI: 10.1016/j.biortech.2022.127897] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Effective removal of nitrogen from coking wastewaters is a great challenge, since conventional biological technologies commonly suffer from concentrated bio-toxic components such as phenolic compounds and thiocyanide (SCN-). This study has successfully developed a novel ternary process for efficiently removing nitrogen from a practical coking wastewater, by rationally combined biological pretreatment, Fenton sub-pretreatment and final partial nitrification-denitrification (PN) process. It was noted that the oxic biological pretreatment (OP) could degrade above 80 % of COD and SCN- in the wastewater, by adopting the pristine coking wastewater sludge. Fenton sub-pretreatment would further degrade the residual toxic organics and protect the metabolic activity of nitrobacteria and denitrobacteria, realizing the efficient removal of NH4+-N and TN that occurred in the final PN process with self-cultivated sludge. This work can provide an interesting strategy by rationally combining biological-physicochemical processes for nitrogen removal in toxic industrial wastewaters.
Collapse
Affiliation(s)
- Chen Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Yaming Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Mingjie Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, PR China
| | - Wei Xiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Zhicheng Wang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Xiaohui Wu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Feixiang Zan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China; Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, PR China
| | - Tao Zhou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Chen D, Li H, Xue X, Zhang L, Hou Y, Chen H, Zhang Y, Song Y, Zhao S, Guo J. Enhanced simultaneous partial nitrification and denitrification performance of aerobic granular sludge via tapered aeration in sequencing batch reactor for treating low strength and low COD/TN ratio municipal wastewater. ENVIRONMENTAL RESEARCH 2022; 209:112743. [PMID: 35065929 DOI: 10.1016/j.envres.2022.112743] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 01/06/2022] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The aerobic granular sludge simultaneous partial nitrification, denitrification and phosphorus removal (AGS-SPNDPR) process was carried out via tapered aeration in sequencing batch reactor (SBR) for treating low strength and low COD/TN ratio municipal wastewater. The results showed that aerobic granular sludge was successfully cultivated with good sedimentation performance when treating the municipal wastewater. Meanwhile, the median granule size increased to 270 (R1) and 257 (R2) μm on day 80. The excellent removal performance of COD (92%) and NH4+-N (95%) were achieved under different aeration modes, while the higher TN removal efficiency (76%) was achieved by tapered aeration. The accumulation of NO2--N in R2 indicated that the tapered aeration was beneficial to achieve simultaneously partial nitrification and denitrification. Meanwhile, the high-efficiency phosphorus (95%) removal was realized via additional carbon source, and SPNDPR process was formed under tapered aeration. The bacterial community analysis indicated denitrifying glycogen-accumulating organisms (DGAOs) Candidatus_Competibacter and ammonia-oxidizing bacteria (AOB) Nitrosomonas were more effectively enriched via tapered aeration, while phosphorus-accumulating organisms (PAOs) Candidatus_Accumulibacter were effectively enriched under additional organic carbon. AOB, denitrifying bacteria and PAOs were simultaneously enriched by tapered aeration and additional carbon source, which was beneficial to nutrients removal. This study might be conducive to the application of AGS-SPNDPR system for treating low strength and low COD/TN ratio municipal wastewater under tapered aeration.
Collapse
Affiliation(s)
- Denghui Chen
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road #26, Tianjin, 300384, PR China; Beijing Enterprises Water Group (China) Investment Limited, BEWG Building, Poly International Plaza T3, Zone 7, Wangjingdongyuan, Chaoyang District, Beijing, 100102, PR China
| | - Haibo Li
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road #26, Tianjin, 300384, PR China.
| | - Xiaofei Xue
- Beijing Enterprises Water Group (China) Investment Limited, BEWG Building, Poly International Plaza T3, Zone 7, Wangjingdongyuan, Chaoyang District, Beijing, 100102, PR China
| | - Lili Zhang
- Beijing Enterprises Water Group (China) Investment Limited, BEWG Building, Poly International Plaza T3, Zone 7, Wangjingdongyuan, Chaoyang District, Beijing, 100102, PR China.
| | - Yanan Hou
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road #26, Tianjin, 300384, PR China
| | - Han Chen
- Beijing Enterprises Water Group (China) Investment Limited, BEWG Building, Poly International Plaza T3, Zone 7, Wangjingdongyuan, Chaoyang District, Beijing, 100102, PR China
| | - Yousuo Zhang
- CCCC-TDC Harbour Construction Engineering Co., Ltd., Huanggu Dongheng Street #8, Tianjin, 300450, China
| | - Yunda Song
- Beijing Enterprises Water Group (China) Investment Limited, BEWG Building, Poly International Plaza T3, Zone 7, Wangjingdongyuan, Chaoyang District, Beijing, 100102, PR China
| | - Shiqi Zhao
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road #26, Tianjin, 300384, PR China
| | - Jianbo Guo
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Jinjing Road #26, Tianjin, 300384, PR China
| |
Collapse
|
23
|
Kunapongkiti P, Rongsayamanont C, Mhuantong W, Pornkulwat P, Charanaipayuk N, Limpiyakorn T. Substrate loading rates conducive to nitritation in entrapped cell reactors: performance and microbial community structure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:37722-37736. [PMID: 35072882 DOI: 10.1007/s11356-022-18632-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
This study aimed to elucidate the boundaries of ammonia and organic loading rates that allow for nitritation in continuous flow phosphorylated-polyvinyl alcohol entrapped cell reactors and to clarify the community structure of microorganisms involving nitrogen transformation in the gel bead matrices. At operating bulk dissolved oxygen concentration of 2 mg/L, nitritation was accomplished when the total ammonia nitrogen (TAN) loading rate was ≥ 0.3 kgN/m3/d. At TAN loading rates of ≤ 0.2 kgN/m3 /d, complete oxidation of ammonia to nitrate took place. Nitritation performance dropped with increased chemical oxygen demand (COD) loading rates indicating limitation of nitritation reactor operation at some COD loading conditions. 16S rRNA gene amplicon sequencing revealed that the uncultured Cytophagaceae bacterium, Arenimonas, Truepera, Nitrosomonas, Comamonas, unclassified Soil Crenarchaeotic Group, and uncultured Chitinophagaceae bacterium were highly abundant taxa in the reactors' gel bead matrices. qPCR with specific primers targeting amoA genes demonstrated the coexistence of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea, and Comammox in the gel bead matrices. AOB was likely the main functioning ammonia-oxidizing microorganisms due to the amoA gene being of highest abundance in most of the studied conditions. Nitrite-oxidizing microorganisms presented in less relative abundance than ammonia-oxidizing microorganisms, with Nitrobacter rather than Nitrospira dominating in the group. Results obtained from this study are expected to further the application of nitritation entrapped cell reactors to real wastewater treatment processes.
Collapse
Affiliation(s)
- Pattaraporn Kunapongkiti
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Chaiwat Rongsayamanont
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
| | - Wuttichai Mhuantong
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency, Pathumthani, Thailand
| | - Preeyaporn Pornkulwat
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand
| | - Nampetch Charanaipayuk
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand
- International Program in Hazardous Substance and Environmental Management, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Tawan Limpiyakorn
- Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok, 10330, Thailand.
- Center of Excellence on Hazardous Substance Management (HSM), Chulalongkorn University, Bangkok, Thailand.
- Research Unit Control of Emerging Micropollutants in Environment, Chulalongkorn University, Bangkok, Thailand.
- Research Network of NANOTEC-CU on Environment, Department of Environmental Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
24
|
Combined impact of TiO2 nanoparticles and antibiotics on the activity and bacterial community of partial nitrification system. PLoS One 2021; 16:e0259671. [PMID: 34780518 PMCID: PMC8592496 DOI: 10.1371/journal.pone.0259671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 10/24/2021] [Indexed: 12/16/2022] Open
Abstract
The effects of TiO2 nanoparticles (nano-TiO2) together with antibiotics leaking into wastewater treatment plants (WWTPs), especially the partial nitrification (PN) process remain unclear. To evaluate the combined impact and mechanisms of nano-TiO2 and antibiotics on PN systems, batch experiments were carried out with six bench-scale sequencing batch reactors. Nano-TiO2 at a low level had minimal effects on the PN system. In combination with tetracycline and erythromycin, the acute impact of antibiotics was enhanced. Both steps of nitrification were retarded due to the decrease of bacterial activity and abundance, while nitrite-oxidizing bacteria were more sensitive to the inhibition than ammonia-oxidizing bacteria. Proteobacteria at the phylum level and Nitrosospira at the genus level remained predominant under single and combined impacts. The flow cytometry analysis showed that nano-TiO2 enhanced the toxicity of antibiotics through increasing cell permeability. Our results can help clarify the risks of nano-TiO2 combined with antibiotics to PN systems and explaining the behavior of nanoparticles in WWTPs.
Collapse
|
25
|
Fang D, Wang J, Cui D, Dong X, Tang C, Zhang L, Yue D. Recent Advances of Landfill Leachate Treatment. J Indian Inst Sci 2021. [DOI: 10.1007/s41745-021-00262-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|