1
|
Tesfamariam EG, Luo YH, Zhou C, Ye M, Krajmalnik-Brown R, Rittmann BE, Tang Y. Simultaneous biodegradation kinetics of 1,4-dioxane and ethane. Biodegradation 2024; 35:371-388. [PMID: 37917252 DOI: 10.1007/s10532-023-10058-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Biodegradation of 1,4-Dioxane at environmentally relevant concentrations usually requires the addition of a primary electron-donor substrate to sustain biomass growth. Ethane is a promising substrate, since it is available as a degradation product of 1,4-Dioxane's common co-contaminants. This study reports kinetic parameters for ethane biodegradation and co-oxidations of ethane and 1,4-Dioxane. Based on experiments combined with mathematical modeling, we found that ethane promoted 1,4-Dioxane biodegradation when the initial mass ratio of ethane:1,4-Dioxane was < 9:1 mg COD/mg COD, while it inhibited 1,4-Dioxane degradation when the ratio was > 9:1. A model-independent estimator was used for kinetic-parameter estimation, and all parameter values for 1,4-Dioxane were consistent with literature-reported ranges. Estimated parameters support competitive inhibition between ethane as the primary substrate and 1,4-Dioxane as the secondary substrate. The results also support that bacteria that co-oxidize ethane and 1,4-Dioxane had a competitive advantage over bacteria that can use only one of the two substrates. The minimum concentration of ethane to sustain ethane-oxidizing bacteria and ethane and 1,4-Dioxane-co-oxidizing bacteria was 0.09 mg COD/L, which is approximately 20-fold lower than the minimum concentration reported for propane, another common substrate used to promote 1,4-Dioxane biodegradation. The minimum 1,4-Dioxane concentration required to sustain steady-state biomass with 1,4-Dioxane as the sole primary substrate was 1.3 mg COD/L. As 1,4-Dioxane concentrations at most groundwater sites are less than 0.18 mg COD/L, providing ethane as a primary substrate is vital to support biomass growth and consequently enable 1,4-Dioxane bioremediation.
Collapse
Affiliation(s)
- Ermias Gebrekrstos Tesfamariam
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA
| | - Yi-Hao Luo
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Chen Zhou
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Ming Ye
- Department of Earth, Ocean and Atmospheric Science, College of Arts and Sciences, Florida State University, Tallahassee, FL, 32304, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Center for Health Through Microbiomes, Arizona State University, Tempe, AZ, 85281, USA
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ, 85281, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A132, Tallahassee, FL, 32310, USA.
| |
Collapse
|
2
|
Tesfamariam EG, Ssekimpi D, Hoque SS, Chen H, Howe JD, Zhou C, Shen YX, Tang Y. Isolation and characterization of pure cultures for metabolizing 1,4-dioxane in oligotrophic environments. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2024; 89:2440-2456. [PMID: 38747959 PMCID: PMC11162607 DOI: 10.2166/wst.2024.139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/13/2024] [Indexed: 06/11/2024]
Abstract
1,4-Dioxane concentration in most contaminated water is much less than 1 mg/L, which cannot sustain the growth of most reported 1,4-dioxane-metabolizing pure cultures. These pure cultures were isolated following enrichment of mixed cultures at high concentrations (20 to 1,000 mg/L). This study is based on a different strategy: 1,4-dioxane-metabolizing mixed cultures were enriched by periodically spiking 1,4-dioxane at low concentrations (≤1 mg/L). Five 1,4-dioxane-metabolizing pure strains LCD6B, LCD6D, WC10G, WCD6H, and WD4H were isolated and characterized. The partial 16S rRNA gene sequencing showed that the five bacterial strains were related to Dokdonella sp. (98.3%), Acinetobacter sp. (99.0%), Afipia sp. (99.2%), Nitrobacter sp. (97.9%), and Pseudonocardia sp. (99.4%), respectively. Nitrobacter sp. WCD6H is the first reported 1,4-dioxane-metabolizing bacterium in the genus of Nitrobacter. The net specific growth rates of these five cultures are consistently higher than those reported in the literature at 1,4-dioxane concentrations <0.5 mg/L. Compared to the literature, our newly discovered strains have lower half-maximum-rate concentrations (1.8 to 8.2 mg-dioxane/L), lower maximum specific 1,4-dioxane utilization rates (0.24 to 0.47 mg-dioxane/(mg-protein ⋅ d)), higher biomass yields (0.29 to 0.38 mg-protein/mg-dioxane), and lower decay coefficients (0.01 to 0.02 d-1). These are characteristics of microorganisms living in oligotrophic environments.
Collapse
Affiliation(s)
- Ermias Gebrekrstos Tesfamariam
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | - Dennis Ssekimpi
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | - Sarajeen Saima Hoque
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, Tallahassee, Florida 32310, USA
| | - Joshua D Howe
- Department of Chemical Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Chao Zhou
- Geosyntec Consultants Inc., Costa Mesa, California 92626, USA
| | - Yue-Xiao Shen
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, Texas 79409, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida 32310, USA E-mail:
| |
Collapse
|
3
|
Characterization of 1,4-dioxane degrading microbial community enriched from uncontaminated soil. Appl Microbiol Biotechnol 2023; 107:955-969. [PMID: 36625913 DOI: 10.1007/s00253-023-12363-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/01/2022] [Accepted: 01/01/2023] [Indexed: 01/11/2023]
Abstract
1,4-Dioxane is a contaminant of emerging concern that has been commonly detected in groundwater. In this study, a stable and robust 1,4-dioxane degrading enrichment culture was obtained from uncontaminated soil. The enrichment was capable to metabolically degrade 1,4-dioxane at both high (100 mg L-1) and environmentally relevant concentrations (300 μg L-1), with a maximum specific 1,4-dioxane degradation rate (qmax) of 0.044 ± 0.001 mg dioxane h-1 mg protein-1, and 1,4-dioxane half-velocity constant (Ks) of 25 ± 1.6 mg L-1. The microbial community structure analysis suggested Pseudonocardia species, which utilize the dioxane monooxygenase for metabolic 1,4-dioxane biodegradation, were the main functional species for 1,4-dioxane degradation. The enrichment culture can adapt to both acidic (pH 5.5) and alkaline (pH 8) conditions and can recover degradation from low temperature (10°C) and anoxic (DO < 0.5 mg L-1) conditions. 1,4-Dioxane degradation of the enrichment culture was reversibly inhibited by TCE with concentrations higher than 5 mg L-1 and was completely inhibited by the presence of 1,1-DCE as low as 1 mg L-1. Collectively, these results demonstrated indigenous stable and robust 1,4-dioxane degrading enrichment culture can be obtained from uncontaminated sources and can be a potential candidate for 1,4-dioxane bioaugmentation at environmentally relevant conditions. KEY POINTS: •1,4-Dioxane degrading enrichment was obtained from uncontaminated soil. • The enrichment culture could degrade 1,4-dioxane to below 10 μg L-1. •Low Ks and low cell yield of the enrichment benefit its application in bioremediation.
Collapse
|
4
|
Tang Y. A Review of Challenges and Opportunities for Microbially Removing 1,4-Dioxane to Meet Drinking-Water and Groundwater Guidelines. CURRENT OPINION IN ENVIRONMENTAL SCIENCE & HEALTH 2023; 31:100419. [PMID: 36582465 PMCID: PMC9794176 DOI: 10.1016/j.coesh.2022.100419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
1,4-Dioxane is an emerging contaminant in drinking-water sources and contaminated sites. Microbial removal of 1,4-dioxane has attracted a lot of attention, but faces a challenge: being not able to continuously metabolize 1,4-dioxane to below most drinking-water and groundwater guidelines. The 1,4-dioxane concentrations in most drinking-water sources and contaminated sites are too low to sustain biomass growth. This minireview discusses strategies that may potentially address the challenge. The strategies include: 1) finding oligotrophs for which the minimum 1,4-dioxane concentrations to sustain biomass are low, 2) determining conditions that maximize 1,4-dioxane co-metabolism or co-oxidation, 3) creating novel materials as biomass carriers and contaminant concentrators, and 4) lowering the life-cycle costs of technologies that combine biodegradation with (electro)chemical oxidation or phytoremediation.
Collapse
Affiliation(s)
- Youneng Tang
- Department of Civil and Environmental Engineering, FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street Suite A130, Tallahassee, Florida 32310, USA
| |
Collapse
|
5
|
Acidic Neutralization by Indigenous Bacteria Isolated from Abandoned Mine Areas. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12073324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Soil acidification has been a serious problem in abandoned mine areas, and could be exacerbated by acid deposition with the release of mine wastes. In this study, three different indigenous bacterial consortia were isolated from abandoned mines in South Korea, from which the potential for acid neutralization of microorganisms was evaluated. They were all able to neutralize acidity within 24 h in the liquid nutrient medium. Moreover, a strong positive correlation (R = +0.922, p < 0.05) was established between the ammonium ion (NH4+) production yield and the resulting pH, indicating that NH4+ served as an important metabolite for biological neutralization. Serratialiquefaciens, Citrobacter youngae, Pseudescherichia vulneris, and Serratia grimesii had higher acid neutralization ability to generate NH4+ by the metabolism of nitrogen compounds such as carboxylation and urea hydrolysis. Therefore, acidic soils can be expected to be ameliorated by indigenous microorganisms through in situ biostimulation with the adequate introduction of nitrogenous substances into the soil environments.
Collapse
|