1
|
Sivasamy S, Rajangam S, Kanagasabai T, Bisht D, Prabhakaran R, Dhandayuthapani S. Biocatalytic Potential of Pseudomonas Species in the Degradation of Polycyclic Aromatic Hydrocarbons. J Basic Microbiol 2025; 65:e2400448. [PMID: 39468883 DOI: 10.1002/jobm.202400448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 09/13/2024] [Accepted: 10/02/2024] [Indexed: 10/30/2024]
Abstract
Polycyclic aromatic hydrocarbons (PAHs), one of the major environmental pollutants, produced from incomplete combustion of materials like coal, oil, gas, wood, and charbroiled meat, that contaminate the air, soil, and water, necessitating urgent remediation. Understanding the metabolic pathways for PAHs degradation is crucial to preventing environmental damage and health issues. Biological methods are gaining increasing interest due to their cost-effectiveness and environmental friendliness. These methods are particularly suitable for remediating PAHs contamination and mitigating associated risks. The paper also outlines the processes for biodegrading PAHs, emphasizing the function of Pseudomonas spp., a kind of bacterium recognized for its capacity to degrade PAHs. To eliminate PAHs from the environment and reduce threats to human health and the environment, Pseudomonas spp. is essential. Understanding the mechanism of PAH breakdown by means of microbes could lead to effective clean-up strategies. The review highlights the enzymatic capabilities, adaptability, and genetic versatility of the genes like nah and phn of Pseudomonas spp., which are involved in PAHs degradation pathways. Scientific evidence supports using Pseudomonas spp. as biocatalysts for PAHs clean-up, offering cost-effective and eco-friendly solutions.
Collapse
Affiliation(s)
- Sivabalan Sivasamy
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, Uttar Pradesh, India
| | | | - Thanigaivelan Kanagasabai
- Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Meharry Medical College, Nashville, Tennessee, USA
| | - Dakshina Bisht
- Department of Microbiology, Santosh Medical College & Hospital, Santosh Deemed to be University, Ghaziabad, Uttar Pradesh, India
| | - Rajkumar Prabhakaran
- Central Research Facility, Santosh Deemed to be University, Ghaziabad, Uttar Pradesh, India
| | | |
Collapse
|
2
|
Liu MD, Du Y, Koupaei SK, Kim NR, Fischer MS, Zhang W, Traxler MF. Surface-active antibiotic production as a multifunctional adaptation for postfire microorganisms. THE ISME JOURNAL 2024; 18:wrae022. [PMID: 38366029 PMCID: PMC11069360 DOI: 10.1093/ismejo/wrae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/01/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Wildfires affect soils in multiple ways, leading to numerous challenges for colonizing microorganisms. Although it is thought that fire-adapted microorganisms lie at the forefront of postfire ecosystem recovery, the specific strategies that these organisms use to thrive in burned soils remain largely unknown. Through bioactivity screening of bacterial isolates from burned soils, we discovered that several Paraburkholderia spp. isolates produced a set of unusual rhamnolipid surfactants with a natural methyl ester modification. These rhamnolipid methyl esters (RLMEs) exhibited enhanced antimicrobial activity against other postfire microbial isolates, including pyrophilous Pyronema fungi and Amycolatopsis bacteria, compared to the typical rhamnolipids made by organisms such as Pseudomonas spp. RLMEs also showed enhanced surfactant properties and facilitated bacterial motility on agar surfaces. In vitro assays further demonstrated that RLMEs improved aqueous solubilization of polycyclic aromatic hydrocarbons, which are potential carbon sources found in char. Identification of the rhamnolipid biosynthesis genes in the postfire isolate, Paraburkholderia kirstenboschensis str. F3, led to the discovery of rhlM, whose gene product is responsible for the unique methylation of rhamnolipid substrates. RhlM is the first characterized bacterial representative of a large class of integral membrane methyltransferases that are widespread in bacteria. These results indicate multiple roles for RLMEs in the postfire lifestyle of Paraburkholderia isolates, including enhanced dispersal, solubilization of potential nutrients, and inhibition of competitors. Our findings shed new light on the chemical adaptations that bacteria employ to navigate, grow, and outcompete other soil community members in postfire environments.
Collapse
Affiliation(s)
- Mira D Liu
- Department of Chemistry, University of California, Berkeley, CA 94720, United States
| | - Yongle Du
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Sara K Koupaei
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Nicole R Kim
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Monika S Fischer
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, CA 94720, United States
| | - Matthew F Traxler
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, United States
| |
Collapse
|
3
|
Lu J, Liu Y, Zhang R, Hu Z, Xue K, Dong B. Biochar inoculated with Pseudomonas putida alleviates its inhibitory effect on biodegradation pathways in phenanthrene-contaminated soil. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132550. [PMID: 37729712 DOI: 10.1016/j.jhazmat.2023.132550] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/23/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Controversial results are reported whereby biodegradation of polycyclic aromatic hydrocarbons (PAHs) can be promoted or inhibited by biochar amendment of soil. Metabolomics was applied to analyze the metabolic profiles of amendment with biochar (BB) and biochar inoculated with functional bacteria (Pseudomonas putida) (BP) involved in phenanthrene (PHE) degradation. Additionally, metagenomic analysis was utilized to assess the impact of different treatments on PHE degradation by soil microorganisms. Results indicated that BB treatment decreased the PHE biodegradation of the soil indigenous bacterial consortium, but BP treatment alleviated this inhibitory effect. Metabolomics revealed the differential metabolite 9-phenanthrol was absent in the BB treatment, but was found in the control group (CK), and in the treatment inoculated with the Pseudomonas putida (Ps) and the BP treatment. Metagenomic analysis showed that biochar decreased the abundance of the cytochrome P450 monooxygenase (CYP116), which was detected in the Pseudomonas putida, thus alleviating the inhibitory effect of biochar on PHE degradation. Moreover, a noticeable delayed increase of functional gene abundance and enzymes abundance in the BB treatment was observed in the PHE degradation pathway. Our findings elucidate the mechanism of inhibition with biochar amendment and the alleviating effect of biochar inoculated with degrading bacteria.
Collapse
Affiliation(s)
- Jinfeng Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yuexian Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ruili Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Zhengyi Hu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Kai Xue
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Biya Dong
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Liu MD, Du Y, Koupaei SK, Kim NR, Zhang W, Traxler MF. Surface-active antibiotic production is a multifunctional adaptation for postfire microbes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553728. [PMID: 37645719 PMCID: PMC10462131 DOI: 10.1101/2023.08.17.553728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Wildfires affect soils in multiple ways, leading to numerous challenges for colonizing microbes. While it is thought that fire-adapted microbes lie at the forefront of postfire ecosystem recovery, the specific strategies that these microbes use to thrive in burned soils remain largely unknown. Through bioactivity screening of bacterial isolates from burned soils, we discovered that several Paraburkholderia spp. isolates produced a set of unusual rhamnolipid surfactants with a natural methyl ester modification. These rhamnolipid methyl esters (RLMEs) exhibited enhanced antimicrobial activity against other postfire microbial isolates, including pyrophilous Pyronema fungi and Amycolatopsis bacteria, compared to the typical rhamnolipids made by organisms such as Pseudomonas spp . RLMEs also showed enhanced surfactant properties and facilitated bacterial motility on agar surfaces. In vitro assays further demonstrated that RLMEs improved aqueous solubilization of polycyclic aromatic hydrocarbons, which are potential carbon sources found in char. Identification of the rhamnolipid biosynthesis genes in the postfire isolate, Paraburkholderia caledonica str. F3, led to the discovery of rhlM , whose gene product is responsible for the unique methylation of rhamnolipid substrates. RhlM is the first characterized bacterial representative of a large class of integral membrane methyltransferases that are widespread in bacteria. These results indicate multiple roles for RLMEs in the postfire lifestyle of Paraburkholderia isolates, including enhanced dispersal, solubilization of potential nutrients, and inhibition of competitors. Our findings shed new light on the chemical adaptations that bacteria employ in order to navigate, grow, and outcompete other soil community members in postfire environments. Significance Statement Wildfires are increasing in frequency and intensity at a global scale. Microbes are the first colonizers of soil after fire events, but the adaptations that help these organisms survive in postfire environments are poorly understood. In this work, we show that a bacterium isolated from burned soil produces an unusual rhamnolipid biosurfactant that exhibits antimicrobial activity, enhances motility, and solubilizes potential nutrients derived from pyrolyzed organic matter. Collectively, our findings demonstrate that bacteria leverage specialized metabolites with multiple functions to meet the demands of life in postfire environments. Furthermore, this work reveals the potential of probing perturbed environments for the discovery of unique compounds and enzymes.
Collapse
|
5
|
Cui JQ, He ZQ, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Artificial mixed microbial system for polycyclic aromatic hydrocarbons degradation. Front Microbiol 2023; 14:1207196. [PMID: 37396390 PMCID: PMC10309208 DOI: 10.3389/fmicb.2023.1207196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/18/2023] [Indexed: 07/04/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with major risks to human health. Biological degradation is environmentally friendly and the most appealing remediation method for a wide range of persistent pollutants. Meanwhile, due to the large microbial strain collection and multiple metabolic pathways, PAH degradation via an artificial mixed microbial system (MMS) has emerged and is regarded as a promising bioremediation approach. The artificial MMS construction by simplifying the community structure, clarifying the labor division, and streamlining the metabolic flux has shown tremendous efficiency. This review describes the construction principles, influencing factors, and enhancement strategies of artificial MMS for PAH degradation. In addition, we identify the challenges and future opportunities for the development of MMS toward new or upgraded high-performance applications.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Qiang He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of Education), Tianjin, China
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
6
|
Dhar K, Panneerselvan L, Venkateswarlu K, Megharaj M. Efficient bioremediation of PAHs-contaminated soils by a methylotrophic enrichment culture. Biodegradation 2022; 33:575-591. [PMID: 35976498 PMCID: PMC9581816 DOI: 10.1007/s10532-022-09996-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 08/05/2022] [Indexed: 01/13/2023]
Abstract
Bioaugmentation effectively enhances microbial bioremediation of hazardous polycyclic aromatic hydrocarbons (PAHs) from contaminated environments. While screening for pyrene-degrading bacteria from a former manufactured gas plant soil (MGPS), the mixed enrichment culture was found to be more efficient in PAHs biodegradation than the culturable pure strains. Interestingly, analysis of 16S rRNA sequences revealed that the culture was dominated by a previously uncultured member of the family Rhizobiaceae. The culture utilized C1 and other methylotrophic substrates, including dimethylformamide (DMF), which was used as a solvent for supplementing the culture medium with PAHs. In the liquid medium, the culture rapidly degraded phenanthrene, pyrene, and the carcinogenic benzo(a)pyrene (BaP), when provided as the sole carbon source or with DMF as a co-substrate. The efficiency of the culture in the bioremediation of PAHs from the MGPS and a laboratory waste soil (LWS) was evaluated in bench-scale slurry systems. After 28 days, 80% of Σ16 PAHs were efficiently removed from the inoculated MGPS. Notably, the bioaugmentation achieved 90% removal of four-ringed and 60% of highly recalcitrant five- and six-ringed PAHs from the MGPS. Likewise, almost all phenanthrene, pyrene, and 65% BaP were removed from the bioaugmented LWS. This study highlights the application of the methylotrophic enrichment culture dominated by an uncultured bacterium for the efficient bioremediation of PAHs.
Collapse
Affiliation(s)
- Kartik Dhar
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia
| | - Logeshwaran Panneerselvan
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu, 515003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, ATC Building, University Drive, Callaghan, NSW, 2308, Australia. .,Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW, 2308, Australia.
| |
Collapse
|