1
|
Fukai T, Ushio-Fukai M, Kaplan JH. Copper transporters and copper chaperones: roles in cardiovascular physiology and disease. Am J Physiol Cell Physiol 2018; 315:C186-C201. [PMID: 29874110 DOI: 10.1152/ajpcell.00132.2018] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Copper (Cu) is an essential micronutrient but excess Cu is potentially toxic. Its important propensity to cycle between two oxidation states accounts for its frequent presence as a cofactor in many physiological processes through Cu-containing enzymes, including mitochondrial energy production (via cytochrome c-oxidase), protection against oxidative stress (via superoxide dismutase), and extracellular matrix stability (via lysyl oxidase). Since free Cu is potentially toxic, the bioavailability of intracellular Cu is tightly controlled by Cu transporters and Cu chaperones. Recent evidence reveals that these Cu transport systems play an essential role in the physiological responses of cardiovascular cells, including cell growth, migration, angiogenesis and wound repair. In response to growth factors, cytokines, and hypoxia, their expression, subcellular localization, and function are tightly regulated. Cu transport systems and their regulators have also been linked to various cardiovascular pathophysiologies such as hypertension, inflammation, atherosclerosis, diabetes, cardiac hypertrophy, and cardiomyopathy. A greater appreciation of the central importance of Cu transporters and Cu chaperones in cell signaling and gene expression in cardiovascular biology offers the possibility of identifying new therapeutic targets for cardiovascular disease.
Collapse
Affiliation(s)
- Tohru Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Departments of Pharmacology and Toxicology, Medical College of Georgia at Augusta University , Augusta, Georgia.,Charlie Norwood Veterans Affairs Medical Center , Augusta Georgia
| | - Masuko Ushio-Fukai
- Vascular Biology Center, Medical College of Georgia at Augusta University , Augusta, Georgia.,Department of Medicine (Cardiology), Medical College of Georgia at Augusta University , Augusta, Georgia
| | - Jack H Kaplan
- Department of Biochemistry and Molecular Genetics, University of Illinois College of Medicine , Chicago, Illinois
| |
Collapse
|
2
|
Kamiya T, Takeuchi K, Fukudome S, Hara H, Adachi T. Copper chaperone antioxidant-1, Atox-1, is involved in the induction of SOD3 in THP-1 cells. Biometals 2017; 31:61-68. [PMID: 29168020 DOI: 10.1007/s10534-017-0067-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 11/25/2022]
Abstract
Superoxide dismutase (SOD) 3, a copper (Cu)-containing anti-oxidative enzyme, plays a key role in extracellular redox homeostasis. Cu chaperone antioxidant-1 (Atox-1) not only delivers Cu ions to SOD3 at the trans-Golgi network, it also functions as a transcription factor of SOD3; however, the role of Atox-1 in the regulation of SOD3 during the monocytic differentiation of THP-1 cells has not yet been elucidated. A treatment with 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the expression of the Cu transport protein ATP7A in THP-1 cells. On the other hand, the nuclear translocation of Atox-1 was detected in TPA-treated THP-1 cells, and was suppressed in the presence of the Cu chelator, bathocuproinedisulfonic acid. Furthermore, Atox-1 bound to the SOD3 promoter region in TPA-treated THP-1 cells. The overexpression of Atox-1 in THP-1 cells significantly enhanced TPA-elicited SOD3 expression, whereas its knockdown suppressed this induction. The present results demonstrate that Atox-1 functions as a key molecule in TPA-elicited SOD3 expression.
Collapse
Affiliation(s)
- Tetsuro Kamiya
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan.
| | - Kosuke Takeuchi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Saki Fukudome
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hirokazu Hara
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| | - Tetsuo Adachi
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, 1-25-4, Daigaku-nishi, Gifu, 501-1196, Japan
| |
Collapse
|
3
|
Urso E, Maffia M. Behind the Link between Copper and Angiogenesis: Established Mechanisms and an Overview on the Role of Vascular Copper Transport Systems. J Vasc Res 2015; 52:172-96. [PMID: 26484858 DOI: 10.1159/000438485] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 07/07/2015] [Indexed: 11/19/2022] Open
Abstract
Angiogenesis critically sustains the progression of both physiological and pathological processes. Copper behaves as an obligatory co-factor throughout the angiogenic signalling cascades, so much so that a deficiency causes neovascularization to abate. Moreover, the progress of several angiogenic pathologies (e.g. diabetes, cardiac hypertrophy and ischaemia) can be tracked by measuring serum copper levels, which are being increasingly investigated as a useful prognostic marker. Accordingly, the therapeutic modulation of body copper has been proven effective in rescuing the pathological angiogenic dysfunctions underlying several disease states. Vascular copper transport systems profoundly influence the activation and execution of angiogenesis, acting as multi-functional regulators of apparently discrete pro-angiogenic pathways. This review concerns the complex relationship among copper-dependent angiogenic factors, copper transporters and common pathological conditions, with an unusual accent on the multi-faceted involvement of the proteins handling vascular copper. Functions regulated by the major copper transport proteins (CTR1 importer, ATP7A efflux pump and metallo-chaperones) include the modulation of endothelial migration and vascular superoxide, known to activate angiogenesis within a narrow concentration range. The potential contribution of prion protein, a controversial regulator of copper homeostasis, is discussed, even though its angiogenic involvement seems to be mainly associated with the modulation of endothelial motility and permeability.
Collapse
Affiliation(s)
- Emanuela Urso
- Department of Biological and Environmental Science and Technologies, University of Salento, Lecce, Italy
| | | |
Collapse
|
4
|
Yao J, Qin Z. Counteract of bone marrow of blotchy mice against the increases of plasma copper levels induced by high-fat diets in LDLR-/- mice. J Trace Elem Med Biol 2015; 31:11-7. [PMID: 26004886 PMCID: PMC5675067 DOI: 10.1016/j.jtemb.2015.02.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/19/2015] [Accepted: 02/12/2015] [Indexed: 12/22/2022]
Abstract
BACKGROUND Bone marrow of blotchy mouse (blotchy marrow) reflects the function of transmembrane domain and relevant intramembrane sites of ATP7A in myeloid cells. By chronic infusion of angiotensin II, we previously found that blotchy marrow plays a minor role in regulating plasma copper. Moreover, the recipients of blotchy marrow presented a moderate reduction of plasma lipids and inflammatory mediator production. Little is known about whether these changes are a specific response to angiotensin II or reveal a more general role of ATP7A. OBJECTIVE AND DESIGN We investigated if blotchy marrow reduces plasma lipids and inflammatory mediators induced by high-fat diets. To test this hypothesis, blotchy and control marrows were reconstituted to the recipient mice (irradiated male LDLR-/- mice), followed by high-fat-diet feeding for 4 months. At the end points, plasma metals (copper, zinc and iron), lipid profiling (cholesterol, triglyceride, phospholipids and lipoprotein) and six inflammatory mediators (lymphotacin, MCP3, MCP5, TIMP1, VEGF-A and IP-10) were measured. Parallel experiments were performed using male LDLR-/- mice fed either high-fat diets or chow diets for 4 months. RESULTS In addition to hyperlipidemia and low-grade inflammation, high-fat diets selectively increased plasma copper concentration compared to chow diets in LDLR-/- mice. After high-fat-diet feeding, the recipients with blotchy marrow showed a decrease in plasma copper (p < 0.01) and an increase in plasma iron (p < 0.05). The recipients with blotchy marrow also presented decreases in cholesterol (p < 0.01) and phospholipids (p < 0.05) in plasma. Surprisingly, plasma levels of MCP3 (p < 0.05), MCP5 (p < 0.05), TIMP1 (p < 0.01), VEGF-A (p < 0.01) and IP-10 (p < 0.01) were significantly increased in the recipients with blotchy marrow compared to controls; the increased levels of MCP3, MCP5 and TIMP1 were more than 50%. CONCLUSION Our studies showed that blotchy marrow counteracts the increased copper levels induced by high-fat diets, indicating that circulating myeloid cells can regulate blood copper levels via ATP7A. Moreover, transplantation of blotchy marrow followed by high-fat diets leads to a decrease in lipid profile and an increase in inflammatory mediator production. Overall, blotchy marrow mediates divergent responses to angiotensin II and high-fat diets in vivo.
Collapse
Affiliation(s)
- Jessica Yao
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States.
| |
Collapse
|
5
|
Harris D, Liang Y, Chen C, Li S, Patel O, Qin Z. Bone marrow from blotchy mice is dispensable to regulate blood copper and aortic pathologies but required for inflammatory mediator production in LDLR-deficient mice during chronic angiotensin II infusion. Ann Vasc Surg 2014; 29:328-40. [PMID: 25449986 DOI: 10.1016/j.avsg.2014.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 09/07/2014] [Accepted: 10/02/2014] [Indexed: 12/22/2022]
Abstract
BACKGROUND The blotchy mouse caused by mutations of ATP7A develops low blood copper and aortic aneurysm and rupture. Although the aortic pathologies are believed primarily due to congenital copper deficiencies in connective tissue, perinatal copper supplementation does not produce significant therapeutic effects, hinting additional mechanisms in the symptom development, such as an independent effect of the ATP7A mutations during adulthood. METHODS We investigated if bone marrow from blotchy mice contributes to these symptoms. For these experiments, bone marrow from blotchy mice (blotchy marrow group) and healthy littermate controls (control marrow group) was used to reconstitute recipient mice (irradiated male low-density lipoprotein receptor -/- mice), which were then infused with angiotensin II (1,000 ng/kg/min) for 4 weeks. RESULTS By using Mann-Whitney U test, our results showed that there was no significant difference in the copper concentrations in plasma and hematopoietic cells between these 2 groups. And plasma level of triglycerides was significantly reduced in blotchy marrow group compared with that in control marrow group (P < 0.05), whereas there were no significant differences in cholesterol and phospholipids between these 2 groups. Furthermore, a bead-based multiplex immunoassay showed that macrophage inflammatory protein (MIP)-1β, monocyte chemotactic protein (MCP)-1, MCP-3, MCP-5, tissue inhibitor of metalloproteinases (TIMP)-1, and vascular endothelial growth factor (VEGF)-A production was significantly reduced in the plasma of blotchy marrow group compared with that in control marrow group (P < 0.05). More important, although angiotensin II infusion increased maximal external aortic diameters in thoracic and abdominal segments, there was no significant difference in the aortic diameters between these 2 groups. Furthermore, aortic ruptures, including transmural breaks of the elastic laminae in the abdominal segment and lethal rupture in the thoracic segment, were observed in blotchy marrow group but not in control marrow group; however, there was no significant difference in the incidence of aortic ruptures between these 2 groups (P = 0.10; Fisher's exact test). CONCLUSIONS Overall, our study indicated that the effect of bone marrow from blotchy mice during adulthood is dispensable in the regulation of blood copper, plasma cholesterol and phospholipids levels, and aortic pathologies, but contributes to a reduction of MIP-1β, MCP-1, MCP-3, MCP-5, TIMP-1, and VEGF-A production and triglycerides concentration in plasma. Our study also hints that bone marrow transplantation cannot serve as an independent treatment option.
Collapse
Affiliation(s)
- Devon Harris
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Yuanyuan Liang
- Department of Epidemiology and Biostatistics, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Cang Chen
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Senlin Li
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Om Patel
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX
| | - Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX.
| |
Collapse
|
6
|
Patel OV, Wilson WB, Qin Z. Production of LPS-induced inflammatory mediators in murine peritoneal macrophages: neocuproine as a broad inhibitor and ATP7A as a selective regulator. Biometals 2013; 26:415-25. [DOI: 10.1007/s10534-013-9624-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 03/27/2013] [Indexed: 11/28/2022]
|
7
|
Qin Z, Lai B, Landero J, Caruso JA. Coupling transmission electron microscopy with synchrotron radiation X-ray fluorescence microscopy to image vascular copper. JOURNAL OF SYNCHROTRON RADIATION 2012; 19:1043-1049. [PMID: 23093768 DOI: 10.1107/s090904951203405x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Accepted: 07/30/2012] [Indexed: 06/01/2023]
Abstract
Recently, using synchrotron radiation X-ray fluorescence microscopy (SRXRF), the copper accumulation in rat aortic elastin and copper topography in human THP-1 cell monolayer have been described. However, it is necessary to locate more accurately cellular copper in the vascular cells and tissues. In the current study, SRXRF coupling with transmission electron microscopy (TEM) was used to image copper in sections of human THP-1 cells and mouse aorta. The results showed that sections of 1 µm thickness are required for SRXRF producing a correlative image with TEM between copper topography and cellular ultrastructure. As compared with SRXRF alone, coupling TEM with SRXRF can clearly identify the location of copper in the nucleus and nucleolus in non-dividing THP-1 cell sections, and can differentiate the copper location at elastic laminae from collagen in mouse aortic sections. Thus, these results revealed new information about the copper topography in vascular cells and tissues and highlighted the potential of TEM-SRXRF to investigate the role of copper in macrophage and aortic homeostasis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Vascular Surgery, Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | | | |
Collapse
|
8
|
Human macrophage ATP7A is localized in the trans-Golgi apparatus, controls intracellular copper levels, and mediates macrophage responses to dermal wounds. Inflammation 2012; 35:167-75. [PMID: 21336677 DOI: 10.1007/s10753-011-9302-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The copper transporter ATP7A has attracted significant attention since the discovery of its gene mutation leading to human Menkes disease. We previously reported that ATP7A is highly expressed in the human vasculature and identified a novel vascular function of ATP7A in modulation of the expression and activity of extracellular superoxide dismutase. We recently identified that ATP7A expression in THP-1 cells (a monocyte/macrophage model cell line) plays a role in the oxidation of low density lipoproteins, indicating that it is necessary to further investigate its expression and function in monocytes/macrophages. In the current study, we demonstrated the protein and mRNA expression of ATP7A in human peripheral blood mononuclear cell (PBMC)-derived macrophages and alveolar macrophages. ATP7A was strongly co-localized with the trans-Golgi apparatus in PBMC-derived macrophages. Intracellular copper, detected by synchrotron X-ray fluorescence microscopy, was found to be distributed to the nucleus and cytoplasm in human THP-1 cells. To confirm the role of endogenous ATP7A in macrophage copper homeostasis, we performed inductively coupled plasma mass spectrometry in murine peritoneal macrophages, which showed markedly increased intracellular copper levels in macrophages isolated from ATP7A-deficient mice versus control mice. Moreover, the role of ATP7A in regulating macrophage responses to dermal wounds was studied by introduction of control and ATP7A-downregulated THP-1 cells into dermal wounds of nude mice. Infiltration of THP-1 cells into the wounded area (detected by expression of human macrophage markers MAC2 and CD68) was reduced in response to downregulation of ATP7A, hinting decreased macrophage accumulation subsequent to dermal wounds. In summary, alongside our previous studies, these findings indicate that human macrophage ATP7A is localized in the trans-Golgi apparatus, regulates intracellular copper levels, and mediates macrophage responses to a dermal wound.
Collapse
|
9
|
Li ZH, Qiu MZ, Zeng ZL, Luo HY, Wu WJ, Wang F, Wang ZQ, Zhang DS, Li YH, Xu RH. Copper-transporting P-type adenosine triphosphatase (ATP7A) is associated with platinum-resistance in non-small cell lung cancer (NSCLC). J Transl Med 2012; 10:21. [PMID: 22304828 PMCID: PMC3296618 DOI: 10.1186/1479-5876-10-21] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2011] [Accepted: 02/03/2012] [Indexed: 11/10/2022] Open
Abstract
Background Copper export protein ATP7A is important for maintaining copper homeostasis. Recent studies have shown that copper transporters are also involved in the transport of platinum. The goal of this study was to determine the role of ATP7A in the platinum-resistance of non-small cell lung cancer (NSCLC). Methods Sensitivities to platinums were detected by MTT assay and drug-resistance related genes were analyzed by real-time PCR and immunoblotting between DDP-sensitive A549 and the corresponding DDP-resistant cell subline (A549/DDP). ATP7A expression was evaluated by immunohistochemistry in tumor tissues of unresectable NSCLC patients who received cisplatin-basing chemotherapy. Results The expression of ATP7A was significantly higher in A549/DDP cell subline than in A549 cells at both mRNA and protein levels. The silencing of ATP7A expression in A549/DDP by siRNA partially reversed DDP-resistance (29.62%) and increased cell apoptosis. ATP7A expression was detected in 41.6%of NSCLC patients, but not in adjacent stroma nor normal lung tissues. ATP7A-positive patients had a significantly poorer histological grade (p = 0.039) and poorer response to platinum-basing chemotherapy (p = 0.001) compared with ATP7A-negative patients. Cox's proportional hazards analysis showed that ATP7A expression was an independent prognostic factor for overall survival (p = 0.045). Conclusions ATP7A overexpression played an important role in platinum-resistance of NSCLC, and was a negative prognostic factor of NSCLC patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Zhuang-hua Li
- State Key Laboratory of Oncology in South China, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Qin Z, Caruso JA, Lai B, Matusch A, Becker JS. Trace metal imaging with high spatial resolution: applications in biomedicine. Metallomics 2010; 3:28-37. [PMID: 21140012 DOI: 10.1039/c0mt00048e] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
New generations of analytical techniques for imaging of metals are pushing hitherto boundaries of spatial resolution and quantitative analysis in biology. Because of this, the application of these imaging techniques described herein to the study of the organization and dynamics of metal cations and metal-containing biomolecules in biological cell and tissue is becoming an important issue in biomedical research. In the current review, three common metal imaging techniques in biomedical research are introduced, including synchrotron X-ray fluorescence (SXRF) microscopy, secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS). These are exemplified by a demonstration of the dopamine-Fe complexes, by assessment of boron distribution in a boron neutron capture therapy cell model, by mapping Cu and Zn in human brain cancer and a rat brain tumor model, and by the analysis of metal topography within neuromelanin. These studies have provided solid evidence that demonstrates that the sensitivity, spatial resolution, specificity, and quantification ability of metal imaging techniques is suitable and highly desirable for biomedical research. Moreover, these novel studies on the nanometre scale (e.g., of individual single cells or cell organelles) will lead to a better understanding of metal processes in cells and tissues.
Collapse
Affiliation(s)
- Zhenyu Qin
- Department of Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | | | |
Collapse
|
11
|
Qin Z, Konaniah ES, Neltner B, Nemenoff RA, Hui DY, Weintraub NL. Participation of ATP7A in macrophage mediated oxidation of LDL. J Lipid Res 2009; 51:1471-7. [PMID: 19965596 DOI: 10.1194/jlr.m003426] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ATP7A primarily functions to egress copper from cells, thereby supplying this cofactor to secreted copper-accepting enzymes. This ATPase has attracted significant attention since the discovery of its mutation leading to human Menkes disease and the demonstration of its distribution in various tissues. Recently, we reported that ATP7A is expressed in the human vasculature. In the present study, we investigated the cellular expression of ATP7A in atherosclerotic lesions of LDL receptor (-/-) mice. Subsequently, we examined the role of ATP7A in regulating the oxidation of LDL in a macrophage cell model. We observed that ATP7A is expressed in atherosclerotic murine aorta and colocalizes with macrophages. To investigate the function of ATP7A, we downregulated ATP7A expression in THP-1 derived macrophages using small interfering RNA (siRNA). ATP7A downregulation attenuated cell-mediated oxidation of LDL. Moreover, downregulation of ATP7A resulted in decreased expression and enzymatic activity of cytosolic phospholipase A(2) alpha (cPLA(2)alpha), a key intracellular enzyme involved in cell-mediated LDL oxidation. In addition, cPLA(2)alpha promoter activity was decreased after downregulation of ATP7A, suggesting that ATP7A transcriptionally regulates cPLA(2)alpha expression. Finally, cPLA(2)alpha overexpression increased LDL oxidation, which was blocked by coadministration of ATP7A siRNA oligonucleotides. These findings suggest a novel mechanism linking ATP7A to cPLA(2)alpha and LDL oxidation, suggesting that this copper transporter could play a previously unrecognized role in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Zhenyu Qin
- Division of Cardiovascular Diseases, Genome Research Institute, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Mammalian copper-transporting P-type ATPases, ATP7A and ATP7B: emerging roles. Int J Biochem Cell Biol 2009; 42:206-9. [PMID: 19922814 DOI: 10.1016/j.biocel.2009.11.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 11/09/2009] [Accepted: 11/09/2009] [Indexed: 12/20/2022]
Abstract
Copper (Cu) has a role in a diverse and increasing number of pathways, physiological and disease processes. These roles are testament to the fundamental importance of Cu in biology and the need to understand the mechanisms that regulate Cu homeostasis. The mammalian Cu-transporting P-type ATPases ATP7A and ATP7B are two key proteins that regulate the Cu status of the body. They transport Cu across cellular membranes for biosynthetic and protective functions, enabling Cu to fulfill its role as a catalytic and structural cofactor for many essential enzymes, and to prevent a toxic build-up of Cu inside cells. A variety of regulatory mechanisms operate at transcriptional and post-translational levels to ensure adequate Cu supplies for both physiological and pathophysiological processes. This review summarizes the recent literature that is revealing the emerging roles of the Cu-ATPases in health and disease.
Collapse
|
13
|
Easter RN, Qilin Chan, Lai B, Ritman EL, Caruso JA, Zhenyu Qin. Vascular metallomics: copper in the vasculature. Vasc Med 2009; 15:61-9. [PMID: 19808712 DOI: 10.1177/1358863x09346656] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Owing to recent progress in analytical techniques, metallomics are evolving from detecting distinct trace metals in a defined state to monitor the dynamic changes in the abundance and location of trace metals in vitro and in vivo. Vascular metallomics is an emerging field that studies the role of trace metals in vasculature. This review will introduce common metallomics techniques including atomic absorption spectrometry, inductively coupled plasma-atomic emission spectrometry, inductively coupled plasma-mass spectrometry and X-ray fluorescence spectrometry with a summary table to compare these techniques. Moreover, we will summarize recent research findings that have applied these techniques to human population studies in cardiovascular diseases, with a particular emphasis on the role of copper in these diseases. In order to address the issue of interdisciplinary studies between metallomics and vascular biology, we will review the progress of efforts to understand the role of copper in neovascularization. This recent advance in the metallomics field may be a powerful tool to elucidate the signaling pathways and specific biological functions of these trace metals. Finally, we summarize the evidence to support the notion that copper is a dynamic signaling molecule. As a future direction, vascular metallomics studies may lead to the identification of targets for diagnosis and therapy in cardiovascular disease.
Collapse
Affiliation(s)
- Renee N Easter
- Division of Cardiovascular Disease, College of Medicine, University of Cincinnati, Cincinnati, OH 45267, USA
| | | | | | | | | | | |
Collapse
|