1
|
Tajer L, Paillart JC, Dib H, Sabatier JM, Fajloun Z, Abi Khattar Z. Molecular Mechanisms of Bacterial Resistance to Antimicrobial Peptides in the Modern Era: An Updated Review. Microorganisms 2024; 12:1259. [PMID: 39065030 PMCID: PMC11279074 DOI: 10.3390/microorganisms12071259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/10/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance (AMR) poses a serious global health concern, resulting in a significant number of deaths annually due to infections that are resistant to treatment. Amidst this crisis, antimicrobial peptides (AMPs) have emerged as promising alternatives to conventional antibiotics (ATBs). These cationic peptides, naturally produced by all kingdoms of life, play a crucial role in the innate immune system of multicellular organisms and in bacterial interspecies competition by exhibiting broad-spectrum activity against bacteria, fungi, viruses, and parasites. AMPs target bacterial pathogens through multiple mechanisms, most importantly by disrupting their membranes, leading to cell lysis. However, bacterial resistance to host AMPs has emerged due to a slow co-evolutionary process between microorganisms and their hosts. Alarmingly, the development of resistance to last-resort AMPs in the treatment of MDR infections, such as colistin, is attributed to the misuse of this peptide and the high rate of horizontal genetic transfer of the corresponding resistance genes. AMP-resistant bacteria employ diverse mechanisms, including but not limited to proteolytic degradation, extracellular trapping and inactivation, active efflux, as well as complex modifications in bacterial cell wall and membrane structures. This review comprehensively examines all constitutive and inducible molecular resistance mechanisms to AMPs supported by experimental evidence described to date in bacterial pathogens. We also explore the specificity of these mechanisms toward structurally diverse AMPs to broaden and enhance their potential in developing and applying them as therapeutics for MDR bacteria. Additionally, we provide insights into the significance of AMP resistance within the context of host-pathogen interactions.
Collapse
Affiliation(s)
- Layla Tajer
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
| | - Jean-Christophe Paillart
- CNRS, Architecture et Réactivité de l’ARN, UPR 9002, Université de Strasbourg, 2 Allée Konrad Roentgen, F-67000 Strasbourg, France;
| | - Hanna Dib
- College of Engineering and Technology, American University of the Middle East, Egaila 54200, Kuwait;
| | - Jean-Marc Sabatier
- CNRS, INP, Inst Neurophysiopathol, Aix-Marseille Université, 13385 Marseille, France
| | - Ziad Fajloun
- Laboratory of Applied Biotechnology (LBA3B), Azm Center for Research in Biotechnology and Its Applications, Department of Cell Culture, EDST, Lebanese University, Tripoli 1300, Lebanon; (L.T.); (Z.F.)
- Department of Biology, Faculty of Sciences 3, Lebanese University, Campus Michel Slayman Ras Maska, Tripoli 1352, Lebanon
| | - Ziad Abi Khattar
- Faculty of Medicine and Medical Sciences, University of Balamand, Kalhat, P.O. Box 100, Tripoli, Lebanon
| |
Collapse
|
2
|
Ostan NKH, Cole GB, Wang FZ, Reichheld SE, Moore G, Pan C, Yu R, Lai CCL, Sharpe S, Lee HO, Schryvers AB, Moraes TF. A secreted bacterial protein protects bacteria from cationic antimicrobial peptides by entrapment in phase-separated droplets. PNAS NEXUS 2024; 3:pgae139. [PMID: 38633880 PMCID: PMC11022072 DOI: 10.1093/pnasnexus/pgae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/26/2024] [Indexed: 04/19/2024]
Abstract
Mammalian hosts combat bacterial infections through the production of defensive cationic antimicrobial peptides (CAPs). These immune factors are capable of directly killing bacterial invaders; however, many pathogens have evolved resistance evasion mechanisms such as cell surface modification, CAP sequestration, degradation, or efflux. We have discovered that several pathogenic and commensal proteobacteria, including the urgent human threat Neisseria gonorrhoeae, secrete a protein (lactoferrin-binding protein B, LbpB) that contains a low-complexity anionic domain capable of inhibiting the antimicrobial activity of host CAPs. This study focuses on a cattle pathogen, Moraxella bovis, that expresses the largest anionic domain of the LbpB homologs. We used an exhaustive biophysical approach employing circular dichroism, biolayer interferometry, cross-linking mass spectrometry, microscopy, size-exclusion chromatography with multi-angle light scattering coupled to small-angle X-ray scattering (SEC-MALS-SAXS), and NMR to understand the mechanisms of LbpB-mediated protection against CAPs. We found that the anionic domain of this LbpB displays an α-helical secondary structure but lacks a rigid tertiary fold. The addition of antimicrobial peptides derived from lactoferrin (i.e. lactoferricin) to the anionic domain of LbpB or full-length LbpB results in the formation of phase-separated droplets of LbpB together with the antimicrobial peptides. The droplets displayed a low rate of diffusion, suggesting that CAPs become trapped inside and are no longer able to kill bacteria. Our data suggest that pathogens, like M. bovis, leverage anionic intrinsically disordered domains for the broad recognition and neutralization of antimicrobials via the formation of biomolecular condensates.
Collapse
Affiliation(s)
- Nicholas K H Ostan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Gregory B Cole
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Flora Zhiqi Wang
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Sean E Reichheld
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Gaelen Moore
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Chuxi Pan
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Ronghua Yu
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | | | - Simon Sharpe
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Anthony B Schryvers
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Trevor F Moraes
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
3
|
Almehdar HA, Abd El-Baky N, Mattar EH, Albiheyri R, Bamagoos A, Aljaddawi A, Uversky VN, Redwan EM. Exploring the mechanisms by which camel lactoferrin can kill Salmonella enterica serovar typhimurium and Shigella sonnei. PeerJ 2023; 11:e14809. [PMID: 36743956 PMCID: PMC9893911 DOI: 10.7717/peerj.14809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 01/05/2023] [Indexed: 01/31/2023] Open
Abstract
There is a continuously increasing pressure associated with the appearance of Salmonella enterica Serovar typhimurium (S. typhimurium) and Shigella sonnei (S. sonnei) that have developed pathogenic multiple antibiotic resistance and the cost of cure and control of these enterobacteriaceae infections increases annually. The current report for first time demonstrated the distinguished antimicrobial action of camel lactoferrin (cLf) obtained from the milk of different clans of camel in Saudi Arabia against S. typhimurium and S. sonnei. These cLf subtypes showed comparable antimicrobial potential when tested against the two bacterial strains but were superior to either bovine (bLf) or human lactoferrin (hLf). The synergism between lactoferrins and antibiotics concerning their antibacterial efficacies against the two bacterial strains was evident. Exploring mechanisms by which camel lactoferrin can kill S. typhimurium and S. sonnei revealed that cLf affects bacterial protein profile. Besides, it interacts with bacterial lipopolysaccharides (LPS) and numerous membrane proteins of S. typhimurium and S. sonnei, with each bacterial strain possessing distinctive binding membrane proteins for lactoferrin. Furthermore, as evidenced by electron microscopy analysis, cLf induces extracellular and intracellular morphological changes in the test bacterial strains when used alone or in combination treatment with antibiotics. Lactoferrin and antibiotics combination strongly disrupts the integrity of the bacterial cells and their membranes. Therefore, cLf can kill S. typhimurium and S. sonnei by four different mechanisms, such as iron chelation, affecting some bacterial proteins, binding to bacterial LPS and membrane proteins, and impairing the integrity of the bacterial cells and their membranes.
Collapse
Affiliation(s)
- Hussein A. Almehdar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Nawal Abd El-Baky
- Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| | - Ehab H. Mattar
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Raed Albiheyri
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Atif Bamagoos
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdullah Aljaddawi
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Vladimir N. Uversky
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, United States of America
| | - Elrashdy M. Redwan
- Department of Biological Sciences, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia,Therapeutic and Protective Proteins Laboratory, Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications, Alexandria, Egypt
| |
Collapse
|
4
|
Yadav R, Govindan S, Daczkowski C, Mesecar A, Chakravarthy S, Noinaj N. Structural insight into the dual function of LbpB in mediating Neisserial pathogenesis. eLife 2021; 10:71683. [PMID: 34751649 PMCID: PMC8577839 DOI: 10.7554/elife.71683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 09/29/2021] [Indexed: 11/19/2022] Open
Abstract
Lactoferrin-binding protein B (LbpB) is a lipoprotein present on the surface of Neisseria that has been postulated to serve dual functions during pathogenesis in both iron acquisition from lactoferrin (Lf), and in providing protection against the cationic antimicrobial peptide lactoferricin (Lfcn). While previous studies support a dual role for LbpB, exactly how these ligands interact with LbpB has remained unknown. Here, we present the structures of LbpB from N. meningitidis and N. gonorrhoeae in complex with human holo-Lf, forming a 1:1 complex and confirmed by size-exclusion chromatography small-angle X-ray scattering. LbpB consists of N- and C-lobes with the N-lobe interacting extensively with the C-lobe of Lf. Our structures provide insight into LbpB’s preference towards holo-Lf, and our mutagenesis and binding studies show that Lf and Lfcn bind independently. Our studies provide the molecular details for how LbpB serves to capture and preserve Lf in an iron-bound state for delivery to the membrane transporter LbpA for iron piracy, and as an antimicrobial peptide sink to evade host immune defenses.
Collapse
Affiliation(s)
- Ravi Yadav
- Purdue University Interdisciplinary Life Sciences Program, West Lafayette, United States.,Department of Biological Sciences,Purdue University, West Lafayette, United States
| | - Srinivas Govindan
- Weldon School of BiomedicalEngineering, Purdue University, West Lafayette, United States
| | - Courtney Daczkowski
- Department of Biochemistry, Purdue University, West Lafayette, United States
| | - Andrew Mesecar
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Department of Biochemistry, Purdue University, West Lafayette, United States
| | | | - Nicholas Noinaj
- Department of Biological Sciences,Purdue University, West Lafayette, United States.,Purdue Institute for Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, United States
| |
Collapse
|
5
|
Synergistic Killing of Pathogenic Escherichia coli Using Camel Lactoferrin from Different Saudi Camel Clans and Various Antibiotics. Protein J 2020; 38:479-496. [PMID: 30963371 DOI: 10.1007/s10930-019-09828-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current study aimed to analyze the synergistic killing of pathogenic Escherichia coli using camel lactoferrin from different Saudi camel clans and various antibiotics. Methods: using multiple microbiological and protein analysis techniques, the results were shown that the purified camel lactoferrins (cLfs) from different Saudi camel have strong antimicrobial potentials against two strains of E. coli. Although all cLfs were superior relative to human or bovine lactoferrins (hLf or bLf), there was no noticeable difference in the antimicrobial potentials of cLfs from different camel clans. The effects of antibiotics and cLfs were synergistic, indicating the superiority of using cLf-antibiotic combinations against E. coli growth. Since these combinations possessed distinguished synergy profiles, it is likely that they can be used to enhance the low efficacy of antibiotics, as well as to control the problems associated with bacterial resistance. Furthermore, these combinations can reduce the cost of cure of bacterial infections, especially in the developing countries. The analysis of the molecular mechanisms of lactoferrin action revealed that expression of several E. coli proteins was affected by the treatment with these antibacterial factors. Several proteins of different molecular weights interacting with cLf-biotin were found. Scanning and transmission electron microscopy analysis revealed the presence of noticeable morphological changes associated with the treatment of E. coli strains by antibiotic carbenicillin or cLf alone, and in combination. Camel lactoferrin has superior potential killing of E. coli over bovine and human lactoferrin, and this potential can be further synergistically enhanced of cLF is combined with antibiotics.
Collapse
|
6
|
Abstract
Iron is an essential micronutrient for both microbes and humans alike. For well over half a century we have known that this element, in particular, plays a pivotal role in health and disease and, most especially, in shaping host-pathogen interactions. Intracellular iron concentrations serve as a critical signal in regulating the expression not only of high-affinity iron acquisition systems in bacteria, but also of toxins and other noted virulence factors produced by some major human pathogens. While we now are aware of many strategies that the host has devised to sequester iron from invading microbes, there are as many if not more sophisticated mechanisms by which successful pathogens overcome nutritional immunity imposed by the host. This review discusses some of the essential components of iron sequestration and scavenging mechanisms of the host, as well as representative Gram-negative and Gram-positive pathogens, and highlights recent advances in the field. Last, we address how the iron acquisition strategies of pathogenic bacteria may be exploited for the development of novel prophylactics or antimicrobials.
Collapse
|
7
|
Ostan NKH, Yu RH, Ng D, Lai CCL, Pogoutse AK, Sarpe V, Hepburn M, Sheff J, Raval S, Schriemer DC, Moraes TF, Schryvers AB. Lactoferrin binding protein B - a bi-functional bacterial receptor protein. PLoS Pathog 2017; 13:e1006244. [PMID: 28257520 PMCID: PMC5352143 DOI: 10.1371/journal.ppat.1006244] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 03/15/2017] [Accepted: 02/15/2017] [Indexed: 11/18/2022] Open
Abstract
Lactoferrin binding protein B (LbpB) is a bi-lobed outer membrane-bound lipoprotein that comprises part of the lactoferrin (Lf) receptor complex in Neisseria meningitidis and other Gram-negative pathogens. Recent studies have demonstrated that LbpB plays a role in protecting the bacteria from cationic antimicrobial peptides due to large regions rich in anionic residues in the C-terminal lobe. Relative to its homolog, transferrin-binding protein B (TbpB), there currently is little evidence for its role in iron acquisition and relatively little structural and biophysical information on its interaction with Lf. In this study, a combination of crosslinking and deuterium exchange coupled to mass spectrometry, information-driven computational docking, bio-layer interferometry, and site-directed mutagenesis was used to probe LbpB:hLf complexes. The formation of a 1:1 complex of iron-loaded Lf and LbpB involves an interaction between the Lf C-lobe and LbpB N-lobe, comparable to TbpB, consistent with a potential role in iron acquisition. The Lf N-lobe is also capable of binding to negatively charged regions of the LbpB C-lobe and possibly other sites such that a variety of higher order complexes are formed. Our results are consistent with LbpB serving dual roles focused primarily on iron acquisition when exposed to limited levels of iron-loaded Lf on the mucosal surface and effectively binding apo Lf when exposed to high levels at sites of inflammation.
Collapse
Affiliation(s)
- Nicholas K. H. Ostan
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Rong-Hua Yu
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | - Dixon Ng
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
| | | | | | - Vladimir Sarpe
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Morgan Hepburn
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Joey Sheff
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - Shaunak Raval
- Department of Chemistry, University of Calgary, Calgary, Alberta, Canada
| | - David C. Schriemer
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - Trevor F. Moraes
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Anthony B. Schryvers
- Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, Alberta, Canada
- Department of Biochemistry & Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- * E-mail:
| |
Collapse
|
8
|
Ostan N, Morgenthau A, Yu RH, Gray-Owen SD, Schryvers AB. A comparative, cross-species investigation of the properties and roles of transferrin- and lactoferrin-binding protein B from pathogenic bacteria. Biochem Cell Biol 2016; 95:5-11. [PMID: 28129513 DOI: 10.1139/bcb-2016-0055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Pathogenic bacteria from the families Neisseriaeceae and Moraxellaceae acquire iron from their host using surface receptors that have the ability to hijack iron from the iron-sequestering host proteins transferrin (Tf) and lactoferrin (Lf). The process of acquiring iron from Tf has been well-characterized, including the role of the surface lipoprotein transferrin-binding protein B (TbpB). In contrast, the only well-defined role for the homologue, LbpB, is in its protection against cationic antimicrobial peptides, which is mediated by regions present in some LbpBs that are highly enriched in glutamic or aspartic acid. In this study we compare the Tf-TbpB and the Lf-LbpB interactions and examine the protective effect of LbpB against extracts from human and transgenic mouse neutrophils to gains insights into the physiological roles of LbpB. The results indicate that in contrast to the Tf-TbpB interaction, Lf-LbpB interaction is sensitive to pH and varies between species. In addition, the results with transgenic mouse neutrophils raise the question of whether there is species specificity in the cleavage of Lf to generate cationic antimicrobial peptides or differences in the potency of peptides derived from mouse and human Lf.
Collapse
Affiliation(s)
- N Ostan
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - A Morgenthau
- b Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada.,c School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - R H Yu
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - S D Gray-Owen
- b Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - A B Schryvers
- a Department of Microbiology & Infectious Diseases, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
9
|
Affiliation(s)
- Piera Valenti
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Rome, Italy,
| | | |
Collapse
|
10
|
Antimicrobial peptide resistance in Neisseria meningitidis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3026-31. [PMID: 26002321 DOI: 10.1016/j.bbamem.2015.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 05/06/2015] [Accepted: 05/12/2015] [Indexed: 12/26/2022]
Abstract
Antimicrobial peptides (AMPs) play an important role as a host defense against microbial pathogens and are key components of the human innate immune response. Neisseria meningitidis frequently colonizes the human nasopharynx as a commensal but also is a worldwide cause of epidemic meningitis and rapidly fatal sepsis. In the human respiratory tract, the only known reservoir of N. meningitidis, meningococci are exposed to human endogenous AMPs. Thus, it is not surprising that meningococci have evolved effective mechanisms to confer intrinsic and high levels of resistance to the action of AMPs. This article reviews the current knowledge about AMP resistance mechanisms employed by N. meningitidis. Two major resistance mechanisms employed by meningococci are the constitutive modification of the lipid A head groups of lipooligosaccharides by phosphoethanolamine and the active efflux pump mediated excretion of AMPs. Other factors influencing AMP resistance, such as the major porin PorB, the pilin biogenesis apparatus, and capsular polysaccharides, have also been identified. Even with an inherently high intrinsic resistance, several AMP resistance determinants can be further induced upon exposure to AMPs. Many well-characterized AMP resistance mechanisms in other Gram-negative bacteria are not found in meningococci. Thus, N. meningitidis utilizes a limited but highly effective set of molecular mechanisms to mediate antimicrobial peptide resistance. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
|