1
|
Liu H, Li P, Tang Z, Liu H, Zhang R, Ge J, Yang H, Ni X, Lin X, Yang L. Study on injectable silver-incorporated calcium phosphate composite with enhanced antibacterial and biomechanical properties for fighting bone cement-associated infections. Colloids Surf B Biointerfaces 2023; 227:113382. [PMID: 37290289 DOI: 10.1016/j.colsurfb.2023.113382] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/28/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Although commonly used in orthopedic surgery, bone cements often face a high risk of post-operative infection. Developing bone cement with antibacterial capability is an effective path for eliminating implant-associated infections. Herein, the potential of silver ions (Ag+) and silver nanoparticles (AgNPs) in modifying CPC for long-term antibacterial property was investigated. Ag+ ions or AgNPs of various concentrations were incorporated in starch-modified calcium phosphate bone cement (CPB) to obtain Ag+-containing (Ag+@CPB) and AgNPs-containing (AgNP@CPB) bone cements. The results showed that all silver-containing CPBs had setting times of about 25-40 min, compressive strengths of greater than 22 MPa, high cytocompatibility but inhibitory effect on Staphylococcus aureus growth. After soaking for 1 week, the mechanical properties and the cytocompatibility of all cements revealed no significant changes, but only CPB with a relatively high content of Ag+ (H-Ag+@CPB) maintained good antibacterial capability over the tested time period. In addition, all the cements showed high injectability and interdigitating capability in cancellous bone and demonstrated augmentation effect on the cannulated pedicle screws fixation in the Sawbones model. In summary, the sustainable antibacterial capability and enhanced biomechanical properties demonstrated that Ag+ ions were more suitable for the fabrication of antibacterial CPC compared to AgNPs. Also, the H-Ag+@CPB, with good injectability, high cytocompatibility, good interdigitating and biomechanical property in cancellous bone, and sustainable antibacterial effects, bears great potential for the treatments of bone infections or implant-associated infections.
Collapse
Affiliation(s)
- Huiling Liu
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Peng Li
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Ziniu Tang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Haoran Liu
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Rui Zhang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Jun Ge
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Huilin Yang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China.
| | - Xiao Lin
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China.
| | - Lei Yang
- Orthopedic Institute, Department of Orthopedics, The First Affiliated Hospital, Soochow University, Suzhou 215006, China; Center for Health Sciences and Engineering (CHSE), Hebei Key Laboratory of Biomaterials and Smart Theranostics, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin 300131, China.
| |
Collapse
|
2
|
Egghe T, Morent R, Hoogenboom R, De Geyter N. Substrate-independent and widely applicable deposition of antibacterial coatings. Trends Biotechnol 2023; 41:63-76. [PMID: 35863949 DOI: 10.1016/j.tibtech.2022.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/25/2022] [Accepted: 06/09/2022] [Indexed: 12/27/2022]
Abstract
Antibacterial coatings are regarded as a necessary tool to prevent implant-related infections. Substrate-independent and widely applicable coating techniques are gaining significant interest to synthesize different types of antibacterial films, which can be relevant from a fundamental and application-oriented perspective. Plasma polymer- and polydopamine-based antibacterial coatings represent the most widely studied and versatile approaches among these coating techniques. Both single- and dual-functional antibacterial coatings can be fabricated with these approaches and a variety of dual-functional antibacterial coating strategies can still be explored in future work. These coatings can potentially be used for a wide range of different implants (material, shape, and size). However, for most implants, significantly more fundamental knowledge needs to be gained before these coatings can find real-life use.
Collapse
Affiliation(s)
- Tim Egghe
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium.
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Faculty of Sciences, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, Sint-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
3
|
He L, Yao Y, Wang N, Nan G. Effects of electric charge on fracture healing. Sci Rep 2022; 12:15839. [PMID: 36151271 PMCID: PMC9508132 DOI: 10.1038/s41598-022-20153-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 09/09/2022] [Indexed: 11/19/2022] Open
Abstract
Fracture nonunion is a common and challenging complication. Although direct current stimulation has been suggested to promote fracture healing, differences in cell density near the positive and negative electrodes have been reported during direct current stimulation. This study aimed to explore the effects of these differences on osteoblast proliferation and fracture healing. MC3T3-E1 cells were stimulated by positive and negative charges to observe cell proliferation, apoptosis, and osteogenic factor expression in vitro, while positive and negative charges were connected to the Kirschner wires of the fractures in an in vivo double-toe fracture model in New Zealand white rabbits and fracture healing was assessed in digital radiography (DR) examinations performed on days 1, 15, 30. Bone tissue samples of all rabbits were analysed histologically after the last examination. The results showed that in comparison with the control group, after DC stimulation, the number of cells near the positive electrode decreased significantly (P < 0.05), apoptosis increased (P < 0.05), the expression of osteocalcin, osteoblast-specific genes, and osteonectin decreased significantly near the positive electrode (P < 0.05) and increased significantly at the negative electrode (P < 0.05). The fracture at the positive electrode junction of New Zealand white rabbits did not heal. Histomorphological analysis showed more bone trabeculae and calcified bone in the bone tissue sections of the control group and the negative electrode group than in the positive electrode group. The bone trabeculae were thick and showed good connections. However, positive charge inhibited osteoblast proliferation and a positive charge at fracture sites did not favour fracture healing. Thus, a positive charge near the fracture site may be a reason for fracture nonunion.
Collapse
Affiliation(s)
- Ling He
- Department of Orthopaedics Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yingling Yao
- Department of Orthopaedics Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Nan Wang
- Department of Orthopaedics Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China.,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China.,Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Guoxin Nan
- Department of Orthopaedics Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, 400014, China. .,Chongqing Engineering Research Center of Stem Cell Therapy, Chongqing, China. .,Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
4
|
Hui L, Chen J, Kafley P, Liu H. Capture and Kill: Selective Eradication of Target Bacteria by a Flexible Bacteria-Imprinted Chip. ACS Biomater Sci Eng 2021; 7:90-95. [PMID: 33338373 DOI: 10.1021/acsbiomaterials.0c01568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper reports an antibacterial chip that can selectively capture bacteria and kill them using low-voltage DC electricity. We prepared a bacteria-imprinted, flexible PDMS chip that can separate target bacteria from suspensions with high selectivity. The chip contained integrated electrodes that can kill the captured bacteria within 10 min by applying a low DC voltage. The used chip could be easily regenerated by solution immersion. Meanwhile, the PDMS chip showed good biocompatibility and inhibited adhesion of human blood cells. Our work points to a new strategy to address pathogenic bacterial contamination and infection.
Collapse
Affiliation(s)
- Liwei Hui
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Jun Chen
- Petersen Institute of NanoScience and Engineering, and Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Parmila Kafley
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Haitao Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
5
|
Xu C, Zhao J, Gong Q, Chen S. Sustained release of vancomycin from bacterial cellulose membrane as dural substitutes for anti-inflammatory wound closure in rabbits. J Biomater Appl 2020; 34:1470-1478. [PMID: 32070189 DOI: 10.1177/0885328220908027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Chen Xu
- Shanghai Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Jianwei Zhao
- Shanghai Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Qiuyuan Gong
- Shanghai Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, China
| | - Shiwen Chen
- Shanghai Sixth People's Hospital, Shanghai JiaoTong University, Shanghai, China
| |
Collapse
|
6
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
7
|
Maharubin S, Hu Y, Sooriyaarachchi D, Cong W, Tan GZ. Laser engineered net shaping of antimicrobial and biocompatible titanium-silver alloys. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110059. [DOI: 10.1016/j.msec.2019.110059] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 08/05/2019] [Accepted: 08/05/2019] [Indexed: 02/08/2023]
|
8
|
Sooriyaarachchi D, Wu J, Feng A, Islam M, Tan GZ. Hybrid Fabrication of Biomimetic Meniscus Scaffold by 3D Printing and Parallel Electrospinning. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.promfg.2019.06.216] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Chromosomal Sil system contributes to silver resistance in E. coli ATCC 8739. Biometals 2018; 31:1101-1114. [DOI: 10.1007/s10534-018-0143-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 09/25/2018] [Indexed: 01/15/2023]
|
10
|
The Ion Delivery Manner Influences the Antimicrobial Efficacy of Silver Oligodynamic Iontophoresis. J Med Biol Eng 2018. [DOI: 10.1007/s40846-018-0447-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|