1
|
Mosallam FM, Helmy EA, El-Bastawisy HS, El-Batal AI. Silver secnidazole nano-hybrid emulsion-based probiotics as a novel antifungal formula against multidrug-resistant vaginal pathogens. Biotechnol Appl Biochem 2025; 72:295-310. [PMID: 39279250 DOI: 10.1002/bab.2663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 08/24/2024] [Indexed: 09/18/2024]
Abstract
This study presents a novel approach to manage vaginal infections due to Candidiasis, utilizing a novel silver secnidazole nano-hybrid emulsion (Ag-Secn-NHE)-based probiotics and free Ag-Secn-NHE. Ag-Secn-NHE was prepared by simple homogenization‒ultrasonication technique and validated by using a ultraviolet‒visible scan, dynamic light scattering, transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy, and zeta potential. Saccharomyces cerevisiae (RCMB 002Y001) is the most effective probiotic-producing organism that demonstrates significant effects when combined with Ag-Secn-NHE. Ag-Secn-NHE-based probiotics showed significant antifungal effect compared to free Ag-Secn-NHE, silver nitrate, silver nanoparticles, secnidazole, secnidazole nanoemulsion, and commercial vaginal wash against multidrug-resistant vaginal pathogens. The highest inhibitory effect was achieved with Ag-Secn-NHE-based probiotic against Candida auris, Candida albicans, and Cryptococcus neoformans with minimal inhibitory concentration (MIC) 0.625 ± 0.002, 0.00625:1.25 ± 0.012 and 0.00625:1.25 ± 0.032 mg/mL, respectively, in comparison with Ag-Secn-NHE that show MIC at 0.00625:1.25 ± 0.612, 0.0125:2.5 ± 0.812, and 0.0125:2.5 ± 0.112 mg/mL (Ag:Secn). Ag-Secn-NHE-based- probiotic show minimum fungicidal concentration (MFC) at range from 2.5 to 20 mg/mL, wherever free Ag-Secn-NHE show MFC range from 5 to >20 mg/mL. Additionally, Ag-Secn-NHE-based probiotics have 75% inhibition of biofilm formation against C. auris and 60% inhibition of biofilm formation against both Cryptococcus neoformans and C. albicans in comparison with free Ag-Secn-NHE. Time-kill curves showed that the antifungal effect of Ag-Secn-NHE-based probiotics was fungistatic at 2MIC value after 4 h and after 16 h for Ag-Secn-NHE. TEM photographs showed that C. auris cells treated with Ag-Secn-NHE-based probiotic formula revealed severe deformations and distored ultrastructural changes. furthermore, results indicated that the Gamma radiation up to 15 kGy increases production of Ag-Secn-NHE in comparison with non-irradiated one.
Collapse
Affiliation(s)
- Farag M Mosallam
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman A Helmy
- Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Hanan S El-Bastawisy
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Ahmed I El-Batal
- Division of Biotechnology, Microbiology Lab, Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
2
|
Zhang M, Lin S, Han L, Zhang J, Liu S, Yang X, Wang R, Yang X, Yi Y. Safety and efficacy evaluation of halicin as an effective drug for inhibiting intestinal infections. Front Pharmacol 2024; 15:1389293. [PMID: 38783954 PMCID: PMC11111955 DOI: 10.3389/fphar.2024.1389293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Halicin, the first antibacterial agent discovered by artificial intelligence, exerts broad-spectrum antibacterial effects and has a unique structure. Our study found that halicin had a good inhibitory effect on clinical isolates of drug-resistant strains and Clostridium perfringens (C. perfringens). The safety of halicin was evaluated by acute oral toxicity, genotoxicity and subchronic toxicity studies. The results of acute toxicity test indicated that halicin, as a low-toxicity compound, had an LD50 of 2018.3 mg/kg. The results of sperm malformation, bone marrow chromosome aberration and cell micronucleus tests showed that halicin had no obvious genotoxicity. However, the results of the 90-day subchronic toxicity test indicated that the test rats exhibited weight loss and slight renal inflammation at a high dose of 201.8 mg/kg. Teratogenicity of zebrafish embryos showed that halicin had no significant teratogenicity. Analysis of intestinal microbiota showed that halicin had a significant effect on the intestinal microbial composition, but caused a faster recovery. Furthermore, drug metabolism experiments showed that halicin was poorly absorbed and quickly eliminated in vivo. Our study found that halicin had a good therapeutic effect on intestinal infection model of C. perfringens. These results show the feasibility of developing oral halicin as a clinical candidate drug for treating intestinal infections.
Collapse
Affiliation(s)
- Maolu Zhang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shuqian Lin
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Lianquan Han
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Jiaming Zhang
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| | - Shaoning Liu
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Xiuzhen Yang
- Animal Products Quality and Safety Center of Shandong Province, Jinan, Shandong, China
| | - Ruiming Wang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Xiaohui Yang
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, China
| | - Yunpeng Yi
- Shandong Provincial Animal and Poultry Green Health Products Creation Engineering Laboratory, Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong, China
| |
Collapse
|
3
|
Noriega S, Cardoso-Ortiz J, López-Luna A, Cuevas-Flores MDR, Flores De La Torre JA. The Diverse Biological Activity of Recently Synthesized Nitro Compounds. Pharmaceuticals (Basel) 2022; 15:717. [PMID: 35745635 PMCID: PMC9230682 DOI: 10.3390/ph15060717] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 02/01/2023] Open
Abstract
The search for new and efficient pharmaceuticals is a constant struggle for medicinal chemists. New substances are needed in order to treat different pathologies affecting the health of humans and animals, and these new compounds should be safe, effective and have the fewest side effects possible. Some functional groups are known for having biological activity; in this matter, the nitro group (NO2) is an efficient scaffold when synthesizing new bioactive molecules. Nitro compounds display a wide spectrum of activities that include antineoplastic, antibiotic, antihypertensive, antiparasitic, tranquilizers and even herbicides, among many others. Most nitro molecules exhibit antimicrobial activity, and several of the compounds mentioned in this review may be further studied as lead compounds for the treatment of H. pylori, P. aeruginosa, M. tuberculosis and S. mutans infections, among others. The NO2 moiety triggers redox reactions within cells causing toxicity and the posterior death of microorganisms, not only bacteria but also multicellular organisms such as parasites. The same effect may be present in humans as well, so the nitro groups can be considered both a pharmacophore and a toxicophore at the same time. The role of the nitro group itself also has a deep effect on the polarity and electronic properties of the resulting molecules, and hence favors interactions with some amino acids in proteins. For these reasons, it is fundamental to analyze the recently synthesized nitro molecules that show any potential activity in order to develop new pharmacological treatments that enhance human health.
Collapse
Affiliation(s)
| | - Jaime Cardoso-Ortiz
- Unidad Académica de Ciencias Químicas, Universidad Autónoma de Zacatecas, Zacatecas 98160, Mexico; (S.N.); (A.L.-L.); (M.D.R.C.-F.); (J.A.F.D.L.T.)
| | | | | | | |
Collapse
|
4
|
D'Agostino I, Mathew GE, Angelini P, Venanzoni R, Angeles Flores G, Angeli A, Carradori S, Marinacci B, Menghini L, Abdelgawad MA, Ghoneim MM, Mathew B, Supuran CT. Biological investigation of N-methyl thiosemicarbazones as antimicrobial agents and bacterial carbonic anhydrases inhibitors. J Enzyme Inhib Med Chem 2022; 37:986-993. [PMID: 35322729 PMCID: PMC8956313 DOI: 10.1080/14756366.2022.2055009] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The enormous burden of the COVID-19 pandemic in economic and healthcare terms has cast a shadow on the serious threat of antimicrobial resistance, increasing the inappropriate use of antibiotics and shifting the focus of drug discovery programmes from antibacterial and antifungal fields. Thus, there is a pressing need for new antimicrobials involving innovative modes of action (MoAs) to avoid cross-resistance rise. Thiosemicarbazones (TSCs) stand out due to their easy preparation and polypharmacological application, also in infectious diseases. Recently, we reported a small library of TSCs (1–9) that emerged for their non-cytotoxic behaviour. Inspired by their multifaceted activity, we investigated the antibacterial, antifungal, and antidermatophytal profiles of derivatives 1–9, highlighting a new promising research line. Furthermore, the ability of these compounds to inhibit selected microbial and human carbonic anhydrases (CAs) was assessed, revealing their possible involvement in the MoA and a good selectivity index for some derivatives.
Collapse
Affiliation(s)
- Ilaria D'Agostino
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | | | - Paola Angelini
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | - Roberto Venanzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy
| | | | - Andrea Angeli
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| | - Simone Carradori
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Beatrice Marinacci
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Luigi Menghini
- Department of Pharmacy, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Mohamed A Abdelgawad
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jouf University, Sakaka, Saudi Arabia
| | - Mohammed M Ghoneim
- Department of Pharmacy Practice, Faculty of Pharmacy, AlMaarefa University, Ad Diriyah, Saudi Arabia
| | - Bijo Mathew
- Department of Pharmaceutical Chemistry, Amrita School of Pharmacy, Amrita Vishwa Vidyapeetham, AIMS Health Sciences Campus, Kochi, India
| | - Claudiu T Supuran
- Neurofarba Department, University of Florence, Sesto Fiorentino, Italy
| |
Collapse
|
5
|
From the Physicochemical Characteristic of Novel Hesperetin Hydrazone to Its In Vitro Antimicrobial Aspects. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27030845. [PMID: 35164110 PMCID: PMC8839478 DOI: 10.3390/molecules27030845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/22/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022]
Abstract
Microorganisms are able to give rise to biofilm formation on food matrixes and along food industry infrastructures or medical equipment. This growth may be reduced by the application of molecules preventing bacterial adhesion on these surfaces. A new Schiff base ligand, derivative of hesperetin, HABH (2-amino-N'-(2,3-dihydro-5,7-dihydroxy-2-(3-hydroxy-4-methoxyphenyl)chromen-4-ylidene)benzohydrazide), and its copper complex, CuHABH [CuLH2(OAc)], were designed, synthesized and analyzed in terms of their structure and physicochemical properties, and tested as antibacterial agents. Their structures both in a solid state and in solution were established using several methods: FT-IR, 1H NMR, 13C NMR, UV-Vis, FAB MS, EPR, ESI-MS and potentiometry. Coordination binding of the copper(II) complex dominating at the physiological pH region in the solution was found to be the same as that detected in the solid state. Furthermore, the interaction between the HABH and CuHABH with calf-thymus DNA (CT-DNA) were investigated. These interactions were tracked by UV-Vis, CD (circular dichroism) and spectrofluorimetry. The results indicate a stronger interaction of the CuHABH with the CT-DNA than the HABH. It can be assumed that the nature of the interactions is of the intercalating type, but in the high concentration range, the complex can bind to the DNA externally to phosphate residues or to a minor/major groove. The prepared compounds possess antibacterial and antibiofilm activities against Gram-positive and Gram-negative bacteria. Their antagonistic activity depends on the factor-strain test system. The glass was selected as a model surface for the experiments on antibiofilm activity. The adhesion of bacterial cells to the glass surface in the presence of the compounds was traced by luminometry and the best antiadhesive action against both bacterial strains was detected for the CuHABH complex. This molecule may play a crucial role in disrupting exopolymers (DNA/proteins) in biofilm formation and can be used to prevent bacterial adhesion especially on glass equipment.
Collapse
|
6
|
Gan WK, Liew HS, Pua LJW, Ng XY, Fong KW, Cheong SL, Liew YK, Low ML. Novel Cu(II) Schiff Base Complex Combination with Polymyxin B/Phenylalanine-Arginine β-Naphthylamide Against Various Bacterial Strains. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-021-10358-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Zalevskaya OA, Gur’eva YA. Recent Studies on the Antimicrobial Activity of Copper Complexes. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421120046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Oliveira AP, Ferencs M, Azevedo VO, Diniz R, Louro SR, Alves OC, Beraldo H. Physicochemical characterization of antimony(III), copper(II) and silver(I) complexes with 4-nitroimidazole-derived hydrazones. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Chen JF, Luo DD, Lin YS, Liu YH, Wu JZ, Yi XQ, Wu Y, Zhang Q, Gao CJ, Cai J, Su ZR. Aqueous extract of Bruguiera gymnorrhiza leaves protects against dextran sulfate sodium induced ulcerative colitis in mice via suppressing NF-κB activation and modulating intestinal microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2020; 251:112554. [PMID: 31923541 DOI: 10.1016/j.jep.2020.112554] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/31/2019] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is tightly associated with inflammation response and oxidative stress. As a folk medicine applied in treatment of diarrhea, Bruguiera gymnorrhiza also possesses anti-inflammatory and anti-oxidative activities, which indicated that B. gymnorrhiza may exert anti-colitis effect. AIM OF THE STUDY To investigate effect and mechanism of B. gymnorrhiza on experimental UC. MATERIALS AND METHODS Aqueous extract of B. gymnorrhiza leaves (ABL) was used for investigation in the present study. Murine UC was established through access to 3% dextran sulfate sodium (DSS) for 7 days. Meanwhile, mice accepted treatment with ABL (25, 50, 100 mg/kg) or sulfasalazine (200 mg/kg) once daily. On the last day, disease activity index (DAI) including body weight loss, fecal character and degree of bloody diarrhea was evaluated, colon segments were obtained for length measurement and further analysis and feces were collected for intestinal microbiota analysis. RESULTS ABL ameliorated DAI scores, colon length shortening and histopathological damage in DSS-induced colitis mice obviously. SOD activity, levels of MDA and GSH altered by colitis were restored remarkably after ABL treatment. ABL inhibited increases in levels of colonic COX-2, iNOS, TNF-α, IL-6, IL-1β, IL-4, IL-10 and IL-11 in colitis mice. Moreover, ABL prominently suppressed NF-κB p65 and IκB phosphorylation and down-regulated mRNA levels of COX-2, iNOS, TNF-α, IL-6 and IL-1β elevated by colitis. As shown in microbiota analysis, ABL modulated composition of intestinal microbiota of colitis mice. CONCLUSION ABL exhibited protective effect against DSS-induced ulcerative colitis through suppressing NF-κB activation and modulating intestinal microbiota.
Collapse
Affiliation(s)
- Jin-Fen Chen
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Dan-Dan Luo
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Yin-Si Lin
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Yu-Hong Liu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Jia-Zhen Wu
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China.
| | - Xiao-Qing Yi
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Yan Wu
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China.
| | - Qian Zhang
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China.
| | - Chang-Jun Gao
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China.
| | - Jian Cai
- Guangdong Academy of Forestry, Guangzhou, 510520, People's Republic of China; Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangzhou, 510520, People's Republic of China.
| | - Zi-Ren Su
- Guangdong Provincial Key Laboratory of New Drug Development and Research of Chinese Medicine, Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, People's Republic of China; Dongguan Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Medicine, Dongguan, 523808, People's Republic of China.
| |
Collapse
|
10
|
Oliveira AP, Freitas JTJ, Diniz R, Pessoa C, Maranhão SS, Ribeiro JM, Souza-Fagundes EM, Beraldo H. Triethylphosphinegold(I) Complexes with Secnidazole-Derived Thiosemicarbazones: Cytotoxic Activity against HCT-116 Colorectal Cancer Cells under Hypoxia Conditions. ACS OMEGA 2020; 5:2939-2946. [PMID: 32095716 PMCID: PMC7033962 DOI: 10.1021/acsomega.9b03778] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 01/22/2020] [Indexed: 05/04/2023]
Abstract
Triethylphosphinegold(I) complexes [Au(HL1)P(CH2CH3)3]PF6 (1), [Au(HL2)P(CH2CH3)3]PF6 (2), and [Au(HL3)P(CH2CH3)3]PF6 (3) were obtained with (E)-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)hydrazinecarbothioamide (HL1), (E)-N-methyl-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)hydrazinecarbothioamide (HL2), and (E)-2-(1-(2-methyl-5-nitro-1H-imidazol-1-yl)propan-2-ylidene)-N-phenylhydrazinecarbothioamide (HL3). All compounds were assayed for their cytotoxic activities against HCT-116 colorectal carcinoma cells under normoxia and hypoxia conditions and against nonmalignant HEK-293 human embryonic kidney cells under normoxia conditions. The thiosemicarbazone ligands HL1-HL3 were inactive against HCT-116 cells under hypoxia but while HL3 was inactive, HL1 and HL2 proved to be cytotoxic to both cell lineages under normoxia conditions. Complexes (1-3) and the triethylphosphinegod(I) precursor proved to be active against both cell lineages in normoxia as well as in hypoxia. While 1 and 3 revealed to be active against HEK-293 and HCT-116 cells, being approximately as active against HCT-116 cells in normoxia as under hypoxia, complex (2) proved to be more active against HCT-116 cells under hypoxia than under normoxia conditions, and more active against HCT-116 cells than against the nonmalignant HEK-293 cells, with the selectivity index, calculated as SI = IC50HEK-293/IC50HCT-116hypoxia, equal to 3.7, similar to the value obtained for the control drug tirapazamine (tirapazamine (TPZ), SI = 4). Although the compounds showed distinct cytotoxic activities, the electrochemical behaviors of HL1-HL3 were very similar, as were the behaviors of complexes (1-3). Complex (2) deserves special interest since it was significantly more active under hypoxia than under normoxia conditions. Hence, in this case, selective reduction of the nitro group in a low oxygen pressure environment, resulting in toxic reactive oxygen species (ROS) and damage to DNA or other biomolecules, might operate, while for the remaining compounds, other modes of action probably occur.
Collapse
Affiliation(s)
- Ana P.
A. Oliveira
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Jennifer T. J. Freitas
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Renata Diniz
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Claudia Pessoa
- Laboratório
de Oncologia Experimental (LOE) - Núcleo de Pesquisa e Desenvolvimento
de Medicamentos (NPDM), Universidade Federal
do Ceará, Fortaleza, CE 60020-181, Brazil
| | - Sarah S. Maranhão
- Laboratório
de Oncologia Experimental (LOE) - Núcleo de Pesquisa e Desenvolvimento
de Medicamentos (NPDM), Universidade Federal
do Ceará, Fortaleza, CE 60020-181, Brazil
| | - Juliana M. Ribeiro
- Departamento
de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Elaine M. Souza-Fagundes
- Departamento
de Fisiologia e Biofísica, Universidade Federal de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
| | - Heloisa Beraldo
- Departamento
de Química, Universidade Federal
de Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
- E-mail: ,
| |
Collapse
|
11
|
He X, Wu C, Qian Y, Li Y, Ding F, Zhou Z, Shen J. Symmetrical bis-salophen probe serves as a selectively and sensitively fluorescent switch of gallium ions in living cells and zebrafish. Talanta 2019; 205:120118. [DOI: 10.1016/j.talanta.2019.120118] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/27/2019] [Accepted: 07/03/2019] [Indexed: 12/25/2022]
|
12
|
Zhang J, Ba Y, Wang S, Yang H, Hou X, Xu Z. Nitroimidazole-containing compounds and their antibacterial and antitubercular activities. Eur J Med Chem 2019; 179:376-388. [PMID: 31260891 DOI: 10.1016/j.ejmech.2019.06.068] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2019] [Accepted: 06/24/2019] [Indexed: 11/24/2022]
Abstract
Infections especially tuberculosis caused by various bacteria including mycobacteria result in millions of lives every year, but the control of bacterial infections is challenged by the limitation of effective pharmaceuticals against drug-resistant pathogens. Nitroimidazoles belong to a group of nitroheterocyclic compounds that have broad-spectrum activity against a series of organisms such as mycobacteria, anaerobic Gram-positive and Gram-negative bacteria, and some of them have already been used in clinics or under clinical trials for the treatment of infectious diseases. In this review, we made an overview of the recent advances in nitroimidazole-containing compounds with antibacterial and antitubercular activity in the recent 20 years.
Collapse
Affiliation(s)
- Jingyu Zhang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Yanyan Ba
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Su Wang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, 450046, Zhengzhou, PR China
| | - Xuehui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, 450046, Zhengzhou, PR China.
| | - Zhi Xu
- Huanghuai University, College of Chemistry and Pharmaceutical Engineering, Zhumadian, PR China.
| |
Collapse
|
13
|
Oliveira APA, Recio-Despaigne AA, Ferreira IP, Diniz R, Sousa KAF, Bastos TM, Pereira Soares MB, Moreira DRM, Beraldo H. Investigation of the antitrypanosomal effects of 2-formyl-8-hydroxyquinoline-derived hydrazones and their antimony(iii) and bismuth(iii) complexes. NEW J CHEM 2019. [DOI: 10.1039/c9nj02676b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
2-formyl-8-hydroxyquinoline-4-nitroimidazolhydrazone (H2Q4NO2Im, H2La, 1) and 2-formyl-8-hydroxyquinoline-4-nitrobenzenehydrazone (H2Q4NO2Ph, H2Lb, 2) were obtained, as well as their Sb(iii) [Sb(L)Cl2] (3, 4) and Bi(III) [Bi(L)Cl2] (5, 6) complexes.
Collapse
Affiliation(s)
- Ana Paula A. Oliveira
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | | | - Isabella P. Ferreira
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Renata Diniz
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| | - Karoline A. F. Sousa
- Instituto Gonçalo Moniz
- FIOCRUZ
- Salvador
- Brazil
- Escola Bahiana de Medicina e Saúde Pública
| | - Tanira M. Bastos
- Instituto Gonçalo Moniz
- FIOCRUZ
- Salvador
- Brazil
- Escola Bahiana de Medicina e Saúde Pública
| | | | | | - Heloisa Beraldo
- Departamento de Química
- Universidade Federal de Minas Gerais
- 31270-901 Belo Horizonte
- Brazil
| |
Collapse
|