1
|
Zhang Y, Liu W, Liu D, Li X, Zhuang Q, Sun Q, Wu X, Li F. Multi-omics analysis of copper metabolism-related molecular subtypes and risk stratification for osteosarcoma. Discov Oncol 2025; 16:480. [PMID: 40192894 PMCID: PMC11977037 DOI: 10.1007/s12672-025-02273-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/31/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND As the most common primary malignant bone tumor, further investigation into risk stratification for osteosarcoma (OS) prognosis is of significant clinical importance. Copper is essential for bone metabolism; however, its specific role in OS remains unclear. METHODS The expression characteristics of copper metabolism related genes (CORGs) in OS were revealed by single cell sequencing. Prognosis-associated CORGs were identified, and a CORG-related scoring system and risk model were established using bioinformatics approaches, including univariate and multivariate Cox regression analyses and LASSO analysis. We further analyzed immune microenvironment infiltration, molecular subtypes and clinicopathological characteristics. The impact of selected CORG with high-risk coefficient on OS cells was tested by qRT-PCR, western blot, siRNA, colony formation analysis and Transwell in vitro. RESULTS We successfully developed an OS scoring system related to copper metabolism and validated its independent prognostic value in patients with OS. The potential clinical value of CORG scoring system was analyzed. APOA4 was selected for in vitro experiments and its effect on the proliferation and invasion ability of OS cells was verified. CONCLUSION We established a copper metabolism-related scoring system to effectively stratify the risk of OS patients. Our results provide a new basis for the role of copper metabolism in OS and provide new potential targets for the treatment of OS.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Wen Liu
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Dayong Liu
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Xiaopeng Li
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Qingshan Zhuang
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Quan Sun
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China
| | - Xiaolin Wu
- Department of Orthopedic Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China.
- Cancer Institute, the Affiliated Hospital of Qingdao University, Qingdao University, Qingdao Cancer Institute, Qingdao, China.
| | - Feng Li
- Department of Minimally Invasive Spine Surgery, Weifang People's Hospital, Weifang, China.
| |
Collapse
|
2
|
Guan H, Zhang Y, Fan W, Yang K, Li G, Chen S, Li L, Duan J. Regulated Cu Diatomic Distance Promoting Carbon-Carbon Coupling During CO 2 Electroreduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2406605. [PMID: 39491509 DOI: 10.1002/smll.202406605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/25/2024] [Indexed: 11/05/2024]
Abstract
To address the bottle-neck carbon-carbon coupling issue during electrochemical carbon dioxide reduction (eCO2RR) to multicarbon (C2+) products, this work develops an anion-directed strategy (Cl-, NO3 -, and SO4 2-) to regulate interatomic distance of Cu diatoms. In comparison to pristine Cu (with a typical Cu-Cu distance of 2.53 Å), Cu-boroimidazole frameworks (BIF)/SO4, NO3, and Cl material shows elongated diatomic distance of 3.90 Å, 4.21 Å, and 3.30 Å, respectively. Among them, the Cu-BIF/Cl exhibits an outstanding eCO2RR performance with a Faradaic efficiency of 72.12% for C2+ products and an industrial-level current density of 539.0 mA cm-2 at -1.75 V versus RHE. Significantly, according to theoretical and in situ experimental investigation, the highly electronegative Cl- ion lifts d-band center of Cu sites of Cu-BIF/Cl, facilitating *CO adsorption with a low Gibbs free energy and its later dimerization overcoming a small energy barrier. In addition, this strategy to manipulate interatomic distance for diatomic catalysts, can also be adaptable to other reactions involving intermediate coupling and following the Langmuir-Hinshelwood mechanism, such as carbon-nitrogen coupling, nitrogen-nitrogen coupling, etc.
Collapse
Affiliation(s)
- Hongxin Guan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yuxiang Zhang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenjun Fan
- Department of Physical Chemistry, Dalian Institute of Chemical and Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Kang Yang
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Guang Li
- College of Chemistry & Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sheng Chen
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Laiquan Li
- Institute of Energy Materials Science, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Jingjing Duan
- MIIT Key Laboratory of Thermal Control of Electronic Equipment, School of Energy and Power Engineering, School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| |
Collapse
|
3
|
Balsa LM, Santa Maria de la Parra L, Ferretti V, León IE. Deciphering the Effect of a Cu(II)-hydrazone Complex on Intracellular Cell Signalling Pathways in a Human Osteosarcoma 2D and 3D Models. Chembiochem 2024; 25:e202400373. [PMID: 39121373 DOI: 10.1002/cbic.202400373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/11/2024]
Abstract
New therapeutic strategies for osteosarcoma (OS) have demonstrated the potential efficacy of copper compounds as anticancer drugs and as a substitute for the often used platinum compounds. OS is a type of bone cancer, primarily affecting young adults and children.The main objective of this work is to discover the molecular targets and cellular pathways related to the antitumor properties of a Cu(II)-hydrazone toward human OS 2D and 3D systems. Cell viability study using MG-63 cells was evaluated in OS monolayer and spheroids. CuHL significantly reduced cell viability in OS models (IC50 2D: 2.6±0.3 μM; IC50 3D: 9.9±1.4 μM) (p<0.001). Also, CuHL inhibits cell proliferation and it induces cells to apoptosis. The main mechanism of action found for CuHL are the interaction with DNA, genotoxicity, the ROS generation and the proteasome activity inhibition. Besides, 67 differentially expressed proteins were found using proteomic approaches. Of those 67 proteins, 40 were found overexpressed and 27 underexpressed. The response to stress and to unfolded protein, as well as ATP synthesis were the most affected biological process among upregulated proteins, whilst proteins related to DNA replication and redox homeostasis were downregulated.
Collapse
Affiliation(s)
- Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Valeria Ferretti
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, (1900), Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, 1900), Argentina
| |
Collapse
|
4
|
Santa Maria de la Parra L, Balsa LM, León IE. Metallocompounds as anticancer agents against osteosarcoma. Drug Discov Today 2024; 29:104100. [PMID: 39019429 DOI: 10.1016/j.drudis.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Metallocompounds are a class of anticancer compounds largely used in the treatment of several types of solid tumors, including bone cancer. Osteosarcoma (OS) is a primary malignant bone tumor that frequently affects children, adolescents and young adults. It is a very invasive type of tumor, so ∼40% of patients develop distant metastases, showing elevated mortality rates. In this review, we present an outline of the chemistry and antitumor properties of metal-based compounds in preclinical (in vitro and in vivo) and clinical OS models, focusing on the relationship between structure-activity, molecular targets and the study of the mechanism of action involved in metallocompound anticancer activity.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
5
|
Han J, Luo J, Wang C, Kapilevich L, Zhang XA. Roles and mechanisms of copper homeostasis and cuproptosis in osteoarticular diseases. Biomed Pharmacother 2024; 174:116570. [PMID: 38599063 DOI: 10.1016/j.biopha.2024.116570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024] Open
Abstract
Copper is an essential trace element in the human body that is extensively distributed throughout various tissues. The appropriate level of copper is crucial to maintaining the life activities of the human body, and the excess and deficiency of copper can lead to various diseases. The copper levels in the human body are regulated by copper homeostasis, which maintains appropriate levels of copper in tissues and cells by controlling its absorption, transport, and storage. Cuproptosis is a distinct form of cell death induced by the excessive accumulation of intracellular copper. Copper homeostasis and cuproptosis has recently elicited increased attention in the realm of human health. Cuproptosis has emerged as a promising avenue for cancer therapy. Studies concerning osteoarticular diseases have elucidated the intricate interplay among copper homeostasis, cuproptosis, and the onset of osteoarticular diseases. Copper dysregulation and cuproptosis cause abnormal bone and cartilage metabolism, affecting related cells. This phenomenon assumes a critical role in the pathophysiological processes underpinning various osteoarticular diseases, with implications for inflammatory and immune responses. While early Cu-modulating agents have shown promise in clinical settings, additional research and advancements are warranted to enhance their efficacy. In this review, we summarize the effects and potential mechanisms of copper homeostasis and cuproptosis on bone and cartilage, as well as their regulatory roles in the pathological mechanism of osteoarticular diseases (e.g., osteosarcoma (OS), osteoarthritis (OA), and rheumatoid arthritis (RA)). We also discuss the clinical-application prospects of copper-targeting strategy, which may provide new ideas for the diagnosis and treatment of osteoarticular diseases.
Collapse
Affiliation(s)
- Juanjuan Han
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Jiayi Luo
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Cuijing Wang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China
| | - Leonid Kapilevich
- Faculty of Physical Education, Tomsk State University, Tomsk 634050, Russia
| | - Xin-An Zhang
- College of Exercise and Health, Shenyang Sport University, Shenyang 110100, China.
| |
Collapse
|
6
|
Santa Maria de la Parra L, Romo AIB, Rodríguez-López J, Nascimento OR, Echeverría GA, Piro OE, León IE. Promising Dual Anticancer and Antimetastatic Action by a Cu(II) Complex Derived from Acylhydrazone on Human Osteosarcoma Models. Inorg Chem 2024; 63:4925-4938. [PMID: 38442008 DOI: 10.1021/acs.inorgchem.3c04085] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
Osteosarcoma cancers are becoming more common in children and young adults, and existing treatments have low efficacy and a very high mortality rate, making it pressing to search for new chemotherapies with high efficacy and high selectivity index. Copper complexes have shown promise in the treatment of osteosarcoma. Here, we report the synthesis, characterization, and anticancer activity of [Cu(N-N-Fur)(NO3)(H2O)] complex where N-N-Fur is (E)-N'-(2-hydroxy-3-methoxybenzylidene)furan-2-carbohydrazide. The [Cu(N-N-Fur)(NO3)(H2O)] complex was characterized via X-ray diffraction and electron spin resonance (ESR), displaying a copper center in a nearly squared pyramid environment with the nitrate ligand acting as a fifth ligand in the coordination sphere. We observed that [Cu(N-N-Fur)(NO3)(H2O)] binds to DNA in an intercalative manner. Anticancer activity on the MG-63 cell line was evaluated in osteosarcoma monolayer (IC50 2D: 1.1 ± 0.1 μM) and spheroids (IC50 3D: 16.3 ± 3.1 μM). Selectivity assays using nontumoral fibroblast (L929 cell line) showed that [Cu(N-N-Fur)(NO3)(H2O)] has selectivity index value of 2.3 compared to cis-diamminedichloroplatinum(II) (CDDP) (SI = 0.3). Additionally, flow cytometry studies demonstrated that [Cu(N-N-Fur)(NO3)(H2O)] inhibits cell proliferation and conveys cells to apoptosis. Cell viability studies of MG-63 spheroids (IC50 = 16.3 ± 3.1 μM) showed that its IC50 value is 4 times lower than for CDDP (IC50 = 65 ± 6 μM). Besides, we found that cell death events mainly occurred in the center region of the spheroids, indicating efficient transport to the microtumor. Lastly, the complex showed dose-dependent reductions in spheroid cell migration from 7.5 to 20 μM, indicating both anticancer and antimetastatic effects.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
| | - Adolfo I B Romo
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Joaquín Rodríguez-López
- Department of Chemistry and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign 61801, Illinois, United States
| | - Otaciro R Nascimento
- Departamento de Física Interdiciplinar, Instituto de Física de São Carlos, Universidade de São Paulo, CP 369 , CEP 13560-970 São Carlos, SP, Brazil
| | - Gustavo A Echeverría
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Oscar E Piro
- Departamento de Física, Facultad de Ciencias Exactas, Universidad Nacional de La Plata and Instituto IFLP (CONICET, CCT-La Plata), C.C. 67, 1900 La Plata, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, 1900 La Plata, Argentina
- Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata. 47 y 115, La Plata 1900, Argentina
| |
Collapse
|
7
|
Balsa LM, Solernó LM, Rodriguez MR, Parajón-Costa BS, Gonzalez-Baró AC, Alonso DF, Garona J, León IE. Cu(II)-acylhydrazone complex, a potent and selective antitumor agent against human osteosarcoma: Mechanism of action studies over in vitro and in vivo models. Chem Biol Interact 2023; 384:110685. [PMID: 37666443 DOI: 10.1016/j.cbi.2023.110685] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/05/2023] [Accepted: 08/26/2023] [Indexed: 09/06/2023]
Abstract
Osteosarcoma (OS) is a frequent bone cancer, affecting largely children and young adults. Cisplatin (CDDP) has been efficacious in the treatment of different cancer such us OS but the development of chemoresistance and important side effects leading to therapeutic failure. Novel therapies including copper compounds have shown to be potentially effective as anticancer drugs and one alternative to usually employed platinum compounds. The goal of this work is the evaluation of the in vitro and in vivo antitumoral activity and dilucidate the molecular target of a Cu(II) cationic complex containing a tridentate hydrazone ligand, CuHL for short, H2L=N'-'-(2-hydroxy-3-methoxybenzylidene)thiophene-2-carbohydrazide, against human OS MG-63 cells. Anticancer activity on MG-63 cell line was evaluated in OS monolayer and spheroids. CuHL significantly impaired cell viability in both models (IC50 2D: 2.1 ± 0.3 μM; 3D: 9.1 ± 1.0 μM) (p < 0.001). Additional cell studies demonstrated the copper compound inhibits cell proliferation and conveys cells to apoptosis, determined by flow cytometry. CuHL showed a great genotoxicity, evaluated by comet assay. Proteomic analysis by Orbitrap Mass Spectometry identified 27 differentially expressed proteins: 17 proteins were found overexpressed and 10 underexpressed in MG-63 cells after the CuHL treatment. The response to unfolded protein was the most affected biological process. In addition, in vivo antitumor effects of the compound were evaluated on human OS tumors xenografted in nude mice. CuHL treatment, at a dose of 2 mg/kg i.p., given three times/week for one month, significantly inhibited the progression of OS xenografts and was associated to a reduction in mitotic index and to an increment of tumor necrosis (p < 0.01). Administration of standard-of-care cytotoxic agent CDDP, following the same treatment schedule as CuHL, failed to impair OS growth and progression.
Collapse
Affiliation(s)
- Lucia M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Luisina M Solernó
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina; Centro de Medicina Traslacional (Unidad 6), Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor Carlos Kirchner" S.A.M.I.C, Argentina
| | - Maria R Rodriguez
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Beatriz S Parajón-Costa
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Ana C Gonzalez-Baró
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina
| | - Daniel F Alonso
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina
| | - Juan Garona
- Centro de Oncología Molecular y Traslacional (COMTra), Universidad Nacional de Quilmes, Argentina; Centro de Medicina Traslacional (Unidad 6), Hospital de Alta Complejidad en Red El Cruce "Dr. Néstor Carlos Kirchner" S.A.M.I.C, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, Asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata, 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata, 1900, Argentina.
| |
Collapse
|
8
|
The Cuproptosis-Related Long Noncoding RNA Signature Predicts Prognosis and Tumour Immune Analysis in Osteosarcoma. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:6314182. [PMID: 36388161 PMCID: PMC9646308 DOI: 10.1155/2022/6314182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Background Cuprotopsis is a type of programmed cell death discovered in recent years. Long noncoding RNAs (lncRNAs) play an important regulatory role in programmed cell death. The effect of cuproptosis-related lncRNAs on osteosarcoma is unknown. Our work, based on cuproptosis-related lncRNAs, proposes a gene signature to assess the prognosis of patients with osteosarcoma. Methods Osteosarcoma gene expression data from The Cancer Genome Atlas (TCGA), clinical features of osteosarcoma and RNA sequencing data of normal adipose tissue were obtained from the UCSC Xena database. A cuproptosis-related lncRNA risk model was established to calculate the risk score. At the same time, cluster analysis, clinicopathological analysis, functional enrichment analysis, and prediction of compounds with potential therapeutic value were evaluated. We analyzed whether there was a correlation between the risk score and tumour immunity. RT-qPCR was used to verify the expression level of lncRNA. Results Nine lncRNAs (AC124798.1, AC006033.2, AL450344.2, AL512625.2, LINC01060, LINC00837, AC004943.2, AC064836.3, and AC100821.2) were identified to create a risk model and indicate the prognosis of patients with osteosarcoma. The high-risk group had a worse prognosis than the low-risk group. Analysis of clinicopathological features, principal component analysis, receiver operating characteristic curve, c-index curve, and comparative analysis of models proved that the model is reliable. Functional enrichment analysis suggests that the risk score may correlate with cell energy metabolism and tumour-related biological function. Three potentially therapeutic compounds have been predicted. These analyses may be beneficial to the treatment of osteosarcoma in the future. RT-qPCR verified the expression level of three lncRNA (LINC01060, NKILA, and SNHG8). Conclusions Cuproptosis-related lncRNAs have a strong relationship with osteosarcoma patients. Nine lncRNA models can effectively forecast the prognosis of osteosarcoma and may play a significant role in the individualized treatment of osteosarcoma patients in the future.
Collapse
|
9
|
Villa-Pérez C, Cadavid-Vargas JF, Medina JJM, Echeverría GA, Camí GE, Virgilio ALD, Soria DB. Physicochemical and biological studies of Ni(II), Cu(II) and Zn(II) ternary complexes of sulfaquinoxaline and 2,2’-bipyrimidine. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
10
|
Gou Y, Huang G, Li J, Yang F, Liang H. Versatile delivery systems for non-platinum metal-based anticancer therapeutic agents. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213975] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
Mansour AM, Abdel‐Ghani NT, Ragab MS. DNA/bovine serum albumin binding and cytotoxicity of transition metal ternary complexes based on sulfamethazine and bromazepam drugs. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ahmed M. Mansour
- Department of Chemistry, Faculty of Science Cairo University Gamma Street Giza 12613 Egypt
| | - Nour T. Abdel‐Ghani
- Department of Chemistry, Faculty of Science Cairo University Gamma Street Giza 12613 Egypt
| | - Mona S. Ragab
- Department of Chemistry, Faculty of Science Cairo University Gamma Street Giza 12613 Egypt
| |
Collapse
|
12
|
Wei W, Liu Z, Wei R, Han GC, Liang C. Synthesis of MOFs/GO composite for corrosion resistance application on carbon steel. RSC Adv 2020; 10:29923-29934. [PMID: 35518252 PMCID: PMC9056312 DOI: 10.1039/d0ra05690a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
Two unreported metal-organic frameworks [Cu(6-Me-2,3-pydc)(1,10-phen)·7H2O] n (namely Cu-MOF) and [Mn2(2,2'-bca)2(H2O)2] n (namely Mn-MOF) were synthesized by a solvothermal method and their structures were characterized and confirmed by elemental analysis, X-ray single crystal diffraction, Fourier infrared spectroscopy and thermogravimetric analysis. Cu-MOF/graphene (Cu-MOF/GR), Cu-MOF/graphene oxide (Cu-MOF/GO), Mn-MOF/graphene (Mn-MOF/GR) and Mn-MOF/graphene oxide (Mn-MOF/GO) composite materials were successfully synthesized by a solvothermal method and characterized and analyzed by PXRD, SEM and TEM. In order to study the corrosion inhibition properties of the Cu-MOF/GR, Cu-MOF/GO, Mn-MOF/GR and Mn-MOF/GO composite materials on carbon steel, they were mixed with waterborne acrylic varnish to prepare a series of composite coatings to explore in 3.5 wt% NaCl solution by electrochemical measurements and results showed that the total polarization resistance of the 3% Cu-MOF/GO and 3% Mn-MOF/GO composite coatings on the carbon steel surface were relatively large, and were 55 097 and 55 729 Ω cm2, respectively, which could effectively protect the carbon steel from corrosion. After immersion for 30 days, the 3% Mn-MOF/GO composite still maintained high corrosion resistance, the |Z| values were still as high as 23 804 Ω cm2. Therefore, MOFs compounded with GO can produce a synergistic corrosion inhibition effect and improve the corrosion resistance of the coating; this conclusion is well confirmed by the adhesion capability test.
Collapse
Affiliation(s)
- Wenchang Wei
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Zheng Liu
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Runzhi Wei
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| | - Guo-Cheng Han
- School of Life and Environmental Sciences, Guilin University of Electronic Technology Guilin 541004 P.R. China
| | - Chuxin Liang
- College of Chemical and Biological Engineering, Guilin University of Technology, Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials Guilin 541004 P.R. China
| |
Collapse
|