Hans S, Fatima Z, Hameed S. Mass spectrometry-based untargeted lipidomics reveals new compositional insights into membrane dynamics of Candida albicans under magnesium deprivation.
J Appl Microbiol 2021;
132:978-993. [PMID:
34424599 DOI:
10.1111/jam.15265]
[Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 06/16/2021] [Accepted: 08/18/2021] [Indexed: 11/29/2022]
Abstract
AIMS
There is growing appreciation in adopting new approaches to disrupt multidrug resistance in human fungal pathogen, Candida albicans. The plasma membrane of C. albicans comprises potential lipid moieties that contribute towards the survival of pathogen and could be utilized as antifungal targets. Considering promising applications of developments in mass spectrometry (MS)-based lipidomics technology, the aim of the study was to analyse lipidome profile and expose lipid-dependent changes in response to Mg deprivation.
METHODS AND RESULTS
We found that both phosphatidylcholine (PC) and lysophosphatidylcholine (LysoPC) were decreased. Increased flip (inward translocation) in the fluorophore labelled NBD-PC was ascribed to enhanced PC-specific flippase activity. Furthermore, a decrease in phosphatidylethanolamine (PE) leading to altered membrane fluidity and loss of cellular material was prominent. Additionally, we observed decreased phosphatidylglycerol (PG) and phosphatidylinositol (PI) leading to genotoxic stress. Besides, we could detect enhanced levels of phosphatidylserine (PS), diacylglycerol (DAG) and triacylglycerides (TAG). The altered gene expressions of lipid biosynthetic pathway by RT-PCR correlated with the lipidome profile. Lastly, we explored abrogated ionic (Na+ and K+ ) transport across the plasma membrane.
CONCLUSIONS
We propose that C. albicans exposed to Mg deprivation could reorganize plasma membrane (lipid species, membrane fluidity and ionic transport), and possibly redirected carbon flux to store energy in TAGs as an adaptive stress response. This work unravels several vulnerable targets governing lipid metabolism in C. albicans and pave way for better antifungal strategies.
SIGNIFICANCE AND IMPACT OF THE STUDY
This study demonstrates that magnesium availability is important when one considers dissecting drug resistance mechanisms in Candida albicans. Through mass spectrometry (MS)-based lipidomics technology, the study analyses lipidome profile and exposes lipid-dependent changes that are vulnerable to magnesium availability and presents an opportunity to employ this new information in improving treatment strategies.
Collapse