1
|
Kalidasan V, Suresh D, Zulkifle N, Hwei YS, Kok Hoong L, Rajasuriar R, Theva Das K. Investigating D-Amino Acid Oxidase Expression and Interaction Network Analyses in Pathways Associated With Cellular Stress: Implications in the Biology of Aging. Bioinform Biol Insights 2024; 18:11779322241234772. [PMID: 38425413 PMCID: PMC10903195 DOI: 10.1177/11779322241234772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 02/07/2024] [Indexed: 03/02/2024] Open
Abstract
D-amino acid oxidase (DAO) is a flavoenzyme that metabolizes D-amino acids by oxidative deamination, producing hydrogen peroxide (H2O2) as a by-product. The generation of intracellular H2O2 may alter the redox-homeostasis mechanism of cells and increase the oxidative stress levels in tissues, associated with the pathogenesis of age-related diseases and organ decline. This study investigates the effect of DAO knockdown using clustered regularly interspaced short palindromic repeats (CRISPR) through an in silico approach on its protein-protein interactions (PPIs) and their potential roles in the process of aging. The target sequence and guide RNA of DAO were designed using the CCTop database, PPI analysis using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, Reactome biological pathway, protein docking using GalaxyTongDock database, and structure analysis. The translated target sequence of DAO lies between amino acids 43 to 50. The 10 proteins that were predicted to interact with DAO are involved in peroxisome pathways such as acyl-coenzyme A oxidase 1 (ACOX1), alanine-glyoxylate and serine-pyruvate aminotransferase (AGXT), catalase (CAT), carnitine O-acetyltransferase (CRAT), glyceronephosphate O-acyltransferase (GNPAT), hydroxyacid oxidase 1 (HAO1), hydroxyacid oxidase 2 (HAO2), trans-L-3-hydroxyproline dehydratase (L3HYPDH), polyamine oxidase (PAOX), and pipecolic acid and sarcosine oxidase (PIPOX). In summary, DAO mutation would most likely reduce activity with its interacting proteins that generate H2O2. However, DAO mutation may result in peroxisomal disorders, and thus, alternative techniques should be considered for an in vivo approach.
Collapse
Affiliation(s)
- V Kalidasan
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Darshinie Suresh
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi, Malaysia
| | - Nurulisa Zulkifle
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| | - Yap Siew Hwei
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Leong Kok Hoong
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Reena Rajasuriar
- Department of Medicine, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Centre of Excellence for Research in AIDS (CERiA), Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kumitaa Theva Das
- Department of Biomedical Sciences, Advanced Medical and Dental Institute, Universiti Sains Malaysia, Kepala Batas, Malaysia
| |
Collapse
|
2
|
Wang L, Tang H, Zhu H, Xue Y, Zheng Y. Enhancement of the substrate specificity of D-amino acid oxidase based on tunnel-pocket engineering. Biotechnol Bioeng 2023; 120:3557-3569. [PMID: 37650151 DOI: 10.1002/bit.28541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 08/11/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023]
Abstract
D-Amino acid oxidase (DAAO) selectively catalyzes the oxidative deamination of D-amino acids, making it one of the most promising routes for synthesizing optically pure L-amino acids, including L-phosphinothricin ( L-PPT), a chiral herbicide with significant market potential. However, the native DAAOs that have been reported have low activity against unnatural acid substrate D-PPT. Herein, we designed and screened a DAAO from Rhodotorula taiwanensis (RtwDAAO), and improved its catalytic potential toward D-PPT through protein engineering. A semirational design approach was employed to create a mutation library based on the tunnel-pocket engineering. After three rounds of iterative saturation mutagenesis, the optimal variant M3rd -SHVG was obtained, exhibiting a >2000-fold increase in relative activity. The kinetic parameters showed that M3rd -SHVG improved the substrate binding affinity and turnover number. This is the optimal parameter reported so far. Further, molecular dynamics simulation revealed that the M3rd -SHVG reshapes the tunnel-pocket and corrects the direction of enzyme-substrate binding, allowing efficiently catalyze unnatural substrates. Our strategy demonstrates that the redesign of tunnel-pockets is effective in improving the activity and kinetic efficiency of DAAO, which provides a valuable reference for enzymatic catalysis. With the M3rd -SHVG as biocatalyst, 500 mM D, L-PPT was completely converted and the yield reached 98%. The results laid the foundation for further industrial production.
Collapse
Affiliation(s)
- Liuyu Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Heng Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Hongli Zhu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yaping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| | - Yuguo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, Zhejiang University of Technology, Hangzhou, P. R. China
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, P. R. China
| |
Collapse
|
3
|
PH-Dependent Enantioselectivity of D-amino Acid Oxidase in Aqueous Solution. Sci Rep 2017; 7:2994. [PMID: 28592826 PMCID: PMC5462808 DOI: 10.1038/s41598-017-03177-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 04/26/2017] [Indexed: 11/30/2022] Open
Abstract
D-amino acid oxidases (DAAO) are stereospecific enzymes which are generally almost inactive towards L-enantiomer in neutral solution when L-, D-amino acids are supplied as substrates. In this paper, the D-amino acid oxidase can catalytic oxidize L-amino acids by modulating pH of aqueous solution. With L-Pro as substrate, the catalytic rate (kcat) and the affinity (Km) of DAAO were 6.71 s−1 and 33 mM at pH 8.0, respectively, suggesting that optimal pH condition enhanced the activity of DAAO towards L-Pro. Similar results were obtained when L-Ala (pH 9.8), L-Arg (pH 6.5), L-Phe (pH 9.0), L-Thr (pH 9.4), and L-Val (pH 8.5) were catalyzed by DAAO at various pH values. The racemization of the L-amino acids was not found by capillary electrophoresis analysis during oxidation, and quantification analysis of L-amino acids before and after catalytic reaction was performed, which confirmed that the modulation of enantioselectivity of DAAO resulted from the oxidation of L-amino acids rather than D-amino acids by changing pH. A mechanistic model was proposed to explain enhanced activity of DAAO towards L-amino acids under optimal pH condition.
Collapse
|
4
|
Development of a multi-enzymatic desymmetrization and its application for the biosynthesis of l -norvaline from dl -norvaline. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
5
|
Chang YC, Khanal Lamichhane A, Bradley J, Rodgers L, Ngamskulrungroj P, Kwon-Chung KJ. Differences between Cryptococcus neoformans and Cryptococcus gattii in the Molecular Mechanisms Governing Utilization of D-Amino Acids as the Sole Nitrogen Source. PLoS One 2015; 10:e0131865. [PMID: 26132227 PMCID: PMC4489021 DOI: 10.1371/journal.pone.0131865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 06/08/2015] [Indexed: 12/03/2022] Open
Abstract
The ability to grow on media containing certain D-amino acids as a sole nitrogen source is widely utilized to differentiate Cryptococcus gattii from C. neoformans. We used the C. neoformans H99 and C. gattii R265 strains to dissect the mechanisms of D-amino acids utilization. We identified three putative D-amino acid oxidase (DAO) genes in both strains and showed that each DAO gene plays different roles in D-amino acid utilization in each strain. Deletion of DAO2 retarded growth of R265 on eleven D-amino acids suggesting its prominent role on D-amino acid assimilation in R265. All three R265 DAO genes contributed to growth on D-Asn and D-Asp. DAO3 was required for growth and detoxification of D-Glu by both R265 and H99. Although growth of H99 on most D-amino acids was poor, deletion of DAO1 or DAO3 further exacerbated it on four D-amino acids. Overexpression of DAO2 or DAO3 enabled H99 to grow robustly on several D-amino acids suggesting that expression levels of the native DAO genes in H99 were insufficient for growth on D-amino acids. Replacing the H99 DAO2 gene with a single copy of the R265 DAO2 gene also enabled its utilization of several D-amino acids. Results of gene and promoter swaps of the DAO2 genes suggested that enzymatic activity of Dao2 in H99 might be lower compared to the R265 strain. A reduction in virulence was only observed when all DAO genes were deleted in R265 but not in H99 indicating a pathobiologically exclusive role of the DAO genes in R265. These results suggest that C. neoformans and C. gattii divergently evolved in D-amino acid utilization influenced by their major ecological niches.
Collapse
Affiliation(s)
- Yun C. Chang
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, United States of America
- * E-mail:
| | - Ami Khanal Lamichhane
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, United States of America
| | - James Bradley
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, United States of America
| | - Laura Rodgers
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, United States of America
| | - Popchai Ngamskulrungroj
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Kyung J. Kwon-Chung
- Molecular Microbiology Section, Laboratory of Clinical Infectious Diseases, NIAID, NIH, Bethesda, MD, United States of America
| |
Collapse
|
6
|
Abstract
D-Serine (DSR) is an endogenous amino acid involved in glia-synapse interactions that has unique neurotransmitter characteristics. DSR acts as obligatory coagonist at the glycine site associated with the N-methyl-D-aspartate subtype of glutamate receptors (NMDAR) and has a cardinal modulatory role in major NMDAR-dependent processes including NMDAR-mediated neurotransmission, neurotoxicity, synaptic plasticity, and cell migration. Since either over- or underfunction of NMDARs may be involved in the pathophysiology of neuropsychiatric disorders; the pharmacological manipulation of DSR signaling represents a major drug development target. A first generation of proof-of-concept animal and clinical studies suggest beneficial DSR effects in treatment-refractory schizophrenia, movement, depression, and anxiety disorders and for the improvement of cognitive performance. A related developing pharmacological strategy is the indirect modification of DSR synaptic levels by use of compounds that alter the function of main enzymes responsible for DSR production and degradation. Accumulating data indicate that, during the next decade, we will witness important advances in the understanding of DSR role that will further contribute to elucidating the causes of neuropsychiatric disorders and will be instrumental in the development of innovative treatments.
Collapse
|
7
|
Zakharova GS, Uporov IV, Tishkov VI. Horseradish peroxidase: modulation of properties by chemical modification of protein and heme. BIOCHEMISTRY (MOSCOW) 2012; 76:1391-401. [PMID: 22339595 DOI: 10.1134/s0006297911130037] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Horseradish peroxidase (HRP) is one of the most studied enzymes of the plant peroxidase superfamily. HRP is also widely used in different bioanalytical applications and diagnostic kits. The methods of genetic engineering and protein design are now widely used to study the catalytic mechanism and to improve properties of the enzyme. Here we review the results of another approach to HRP modification-through the chemical modification of amino acids or prosthetic group of the enzyme. Computer models of HRPs with modified hemes are in good agreement with the experimental data.
Collapse
Affiliation(s)
- G S Zakharova
- Bach Institute of Biochemistry, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
8
|
Kopf J, Hormigo D, García JL, Acebal C, de la Mata I, Arroyo M. Inhibition of Recombinant D-Amino Acid Oxidase from Trigonopsis variabilisby Salts. Enzyme Res 2011; 2011:158541. [PMID: 21423676 PMCID: PMC3057018 DOI: 10.4061/2011/158541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 01/01/2011] [Indexed: 11/20/2022] Open
Abstract
Inhibition of recombinant D-amino acid oxidase fromTrigonopsis variabilis(TvDAAO) activity in the presence of different sodium salts and potassium chloride is reported. A competitive inhibition pattern by sodium chloride was observed, and an inhibition constant value ofKi=85 mM was calculated. Direct connection of NaCl inhibition with FAD cofactor dissociation was confirmed by measuring the fluorescence of tryptophanyl residues of the holoenzyme.
Collapse
Affiliation(s)
- Jessica Kopf
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Daniel Hormigo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - José Luis García
- Departamento de Biología Medioambiental, Centro de Investigaciones Biológicas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Acebal
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Isabel de la Mata
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| | - Miguel Arroyo
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Biológicas, Universidad Complutense de Madrid, José Antonio Novais 2, 28040 Madrid, Spain
| |
Collapse
|