1
|
Melin F, Hellwig P. Redox Properties of the Membrane Proteins from the Respiratory Chain. Chem Rev 2020; 120:10244-10297. [DOI: 10.1021/acs.chemrev.0c00249] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Frederic Melin
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| | - Petra Hellwig
- Chimie de la Matière Complexe UMR 7140, Laboratoire de Bioelectrochimie et Spectroscopie, CNRS-Université de Strasbourg, 1 rue Blaise Pascal, 67070 Strasbourg, France
| |
Collapse
|
2
|
Maréchal A, Hartley AM, Warelow TP, Meunier B, Rich PR. Comparison of redox and ligand binding behaviour of yeast and bovine cytochrome c oxidases using FTIR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2018; 1859:705-711. [PMID: 29852141 PMCID: PMC6094048 DOI: 10.1016/j.bbabio.2018.05.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 05/18/2018] [Accepted: 05/24/2018] [Indexed: 11/20/2022]
Abstract
Redox and CO photolysis FTIR spectra of yeast cytochrome c oxidase WT and mutants are compared to those from bovine and P. denitrificans CcOs in order to establish common functional features. All display changes that can be assigned to their E242 (bovine numbering) equivalent and to weakly H-bonded water molecules. The additional redox-sensitive band reported at 1736 cm−1 in bovine CcO and previously assigned to D51 is absent from yeast CcO and couldn't be restored by introduction of a D residue at the equivalent position of the yeast protein. Redox spectra of yeast CcO also show much smaller changes in the amide I region, which may relate to structural differences in the region around D51 and the subunit I/II interface. Redox-induced FTIR difference spectra of WT and mutant yeast CcO are presented. Functionally-relevant features are compared with other A1-type haem copper oxidases. On oxidoreduction, all show perturbations of bovine residue E242 Introduction of bovine D51 in yeast doesn't result in an additional IR redox band. On photolysis of the FR-CO form all show perturbations of E242 and water molecules
Collapse
Affiliation(s)
- Amandine Maréchal
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK; Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Andrew M Hartley
- Department of Biological Sciences, Birkbeck, University of London, Malet Street, London WC1E 7HX, UK
| | - Thomas P Warelow
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK
| | - Brigitte Meunier
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Peter R Rich
- Department of Structural and Molecular Biology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
3
|
Bagkos G, Koufopoulos K, Piperi C. A new model for mitochondrial membrane potential production and storage. Med Hypotheses 2014; 83:175-81. [PMID: 24907229 DOI: 10.1016/j.mehy.2014.05.001] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 05/10/2014] [Indexed: 02/05/2023]
Abstract
Mitochondrial membrane potential (MMP) is the most reliable indicator of mitochondrial function. The MMP value range of -136 to -140mV has been considered optimal for maximum ATP production for all living organisms. Even small changes from the above range result in a large fall in ATP production and a large increase in ROS production. The resulting bioenergetic deregulation is considered as the causative agent for numerous major human diseases. Normalization of MMP value improves mitochondrial function and gives excellent therapeutic results. In order for a systematic effective treatment of these diseases to be developed, a detailed knowledge of the mechanism of MMP production is absolutely necessary. However, despite the long-standing research efforts, a concrete mechanism for MMP production has not been found yet. The present paper proposes a novel mechanism of MMP production based on new considerations underlying the function of the two basic players of MMP production, the electron transport chain (ETC) and the F1F0 ATP synthase. Under normal conditions, MMP is almost exclusively produced by the electron flow through ETC complexes I-IV, creating a direct electric current that stops in subunit II of complex IV and gradually charges MMP. However, upon ETC dysfunction F1F0 ATP synthase reverses its action and starts to hydrolyze ATP. ATP hydrolysis further produces electric energy which is transferred, in the form of a direct electric current, from F1 to F0 where is used to charge MMP. This new model is expected to redirect current experimental research on mitochondrial bioenergetics and indicate new therapeutic schemes for mitochondrial disorders.
Collapse
Affiliation(s)
- Georgios Bagkos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Kostas Koufopoulos
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, University of Athens Medical School, Athens, Greece.
| |
Collapse
|
4
|
Sharpe MA, Krzyaniak MD, Xu S, McCracken J, Ferguson-Miller S. EPR evidence of cyanide binding to the Mn(Mg) center of cytochrome c oxidase: support for Cu(A)-Mg involvement in proton pumping. Biochemistry 2009; 48:328-35. [PMID: 19108635 PMCID: PMC2638054 DOI: 10.1021/bi801391r] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We examined the anion binding behavior of the Mg(Mn) site in cytochrome c oxidase to test a possible role of this center in proton pumping. Rhodobacter sphaeroides grown in a Mn(II)-rich medium replaces the intrinsic Mg(II) ion with an EPR-detectable Mn(II) ion without change in activity. Due to its close proximity and a shared ligand, oxidized Cu(A) is spin-coupled to the Mn(II) ion, affecting the EPR spectrum. An examination of both bovine and R.s. oxidase crystal structures reveals a hydrogen-bonding pattern in the vicinity of the Mg(II) site that is consistent with three water ligands of the Mg(Mn) center when Cu(A) is oxidized. In the reduced structure, one water molecule in the vicinity of the Cu(A) ligand, E198, moves closer, appearing to be converted into an ionically bonded hydronium ion, while a second water molecule bonded to Mg(Mn) shows evidence of conversion to a hydroxide. The implied proton movement is proposed to be part of a redox-linked export of a pumped proton from the binuclear center into the exit pathway. To test the model, cyanide and azide were added to the oxidized and reduced forms of the enzyme, and Mn(II) CW-EPR and ESEEM spectra were recorded. Addition of azide broadened the CW-EPR spectra for both oxidized and reduced enzyme. Cyanide addition affected the Mn(II) CW-EPR spectrum of reduced cytochrome c oxidase by increasing Mn(II) zero field splitting and broadening the spectral line shapes but had no effect on oxidized enzyme. ESEEM measurements support a differential ability of Mn(II) to bind cyanide in the reduced state of cytochrome c oxidase. This new observation of anion binding at the Mg/Mn site is of interest in terms of accessibility of the buried site and its potential role in redox-dependent proton pumping.
Collapse
Affiliation(s)
- Martyn A Sharpe
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824-1319, USA.
| | | | | | | | | |
Collapse
|
5
|
Redox properties of Thermus thermophilus ba3: different electron-proton coupling in oxygen reductases? Biophys J 2007; 94:2434-41. [PMID: 18065462 DOI: 10.1529/biophysj.107.122614] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A comprehensive study of the thermodynamic redox behavior of the hemes of the ba3 enzyme from Thermus thermophilus, a B-type heme-copper oxygen reductase, is presented. This enzyme, in contrast to those having a single type of heme, allows the B- and A-type hemes to be monitored separately by visible spectroscopy and the reduction potential of each heme to be determined unequivocally. The relative order of the midpoint reduction potentials of each center changed in the pH range from 6 to 8.4, and both hemes present a significant redox-Bohr effect. For instance, at pH 7, the midpoint reduction potentials of the hemes B and A3 are 213 mV and 285 mV, respectively, whereas at pH 8.4, the order is reversed: 246 mV for heme B and 199 mV for heme A3. The existence of redox anticooperativity was established by introducing a redox interaction parameter in a model of pairwise interacting redox centers.
Collapse
|
6
|
|
7
|
Papa S, Capitanio G, Luca Martino P. Concerted involvement of cooperative proton–electron linkage and water production in the proton pump of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1133-43. [PMID: 16945321 DOI: 10.1016/j.bbabio.2006.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Revised: 04/05/2006] [Accepted: 04/07/2006] [Indexed: 11/25/2022]
Abstract
In cytochrome c oxidase, oxido-reductions of heme a/Cu(A) and heme a3/Cu(B) are cooperatively linked to proton transfer at acid/base groups in the enzyme. H+/e- cooperative linkage at Fe(a3)/Cu(B) is envisaged to be involved in proton pump mechanisms confined to the binuclear center. Models have also been proposed which involve a role in proton pumping of cooperative H+/e- linkage at heme a (and Cu(A)). Observations will be presented on: (i) proton consumption in the reduction of molecular oxygen to H2O in soluble bovine heart cytochrome c oxidase; (ii) proton release/uptake associated with anaerobic oxidation/reduction of heme a/Cu(A) and heme a3/Cu(B) in the soluble oxidase; (iii) H+ release in the external phase (i.e. H+ pumping) associated with the oxidative (R-->O transition), reductive (O-->R transition) and a full catalytic cycle (R-->O-->R transition) of membrane-reconstituted cytochrome c oxidase. A model is presented in which cooperative H+/e- linkage at heme a/Cu(A) and heme a3/Cu(B) with acid/base clusters, C1 and C2 respectively, and protonmotive steps of the reduction of O2 to water are involved in proton pumping.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, P zza G Cesare, 70124 Bari, Italy.
| | | | | |
Collapse
|
8
|
Siletsky SA, Han D, Brand S, Morgan JE, Fabian M, Geren L, Millett F, Durham B, Konstantinov AA, Gennis RB. Single-electron photoreduction of the PM intermediate of cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:1122-32. [PMID: 16938268 DOI: 10.1016/j.bbabio.2006.07.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2006] [Revised: 07/13/2006] [Accepted: 07/19/2006] [Indexed: 11/29/2022]
Abstract
The P(M)-->F transition of the catalytic cycle of cytochrome c oxidase from bovine heart was investigated using single-electron photoreduction and monitoring the subsequent events using spectroscopic and electometric techniques. The P(M) state of the oxidase was generated by exposing the oxidized enzyme to CO plus O2. Photoreduction results in rapid electron transfer from heme a to oxoferryl heme a3 with a time constant of about 0.3 ms, as indicated by transients at 605 nm and 580 nm. This rate is approximately 5-fold more rapid than the rate of electron transfer from heme a to heme a3 in the F-->O transition, but is significantly slower than formation of the F state from the P(R) intermediate in the reaction of the fully reduced enzyme with O2 to form state F (70-90 micros). The approximately 0.3 ms P(M)-->F transition is coincident with a rapid photonic phase of transmembrane voltage generation, but a significant part of the voltage associated with the P(M)-->F transition is generated much later, with a time constant of 1.3 ms. In addition, the P(M)-->F transition of the R. sphaeroides oxidase was also measured and also was shown to have two phases of electrogenic proton transfer, with tau values of 0.18 and 0.85 ms.
Collapse
Affiliation(s)
- Sergey A Siletsky
- A N Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow 119 992, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Papa S, Lorusso M, Di Paola M. Cooperativity and flexibility of the protonmotive activity of mitochondrial respiratory chain. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:428-36. [PMID: 16730640 DOI: 10.1016/j.bbabio.2006.03.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2006] [Revised: 03/16/2006] [Accepted: 03/16/2006] [Indexed: 10/24/2022]
Abstract
Functional and structural data are reviewed which provide evidence that proton pumping in cytochrome c oxidase is associated with extended allosteric cooperativity involving the four redox centers in the enzyme . Data are also summarized showing that the H+/e- stoichiometry for proton pumping in the cytochrome span of the mitochondrial respiratory chain is flexible. The DeltapH component of the bulk-phase membrane electrochemical proton gradient exerts a decoupling effect on the proton pump of both the bc1 complex and cytochrome c oxidase. A slip in the pumping efficiency of the latter is also caused by high electron pressure. The mechanistic and physiological implications of proton-pump slips are examined. The easiness with which bulk phase DeltapH causes, at least above a threshold level, decoupling of proton pumping indicates that for active oxidative phosphorylation efficient protonic coupling between redox complexes and ATP synthase takes place at the membrane surface, likely in cristae, without significant formation of delocalized DeltamuH+. A role of slips in modulating oxygen free radical production by the respiratory chain and the mitochondrial pathway of apoptosis is discussed.
Collapse
Affiliation(s)
- Sergio Papa
- Department of Medical Biochemistry, Biology and Physics, University of Bari, Policlinico, P.zza G. Cesare, 70124 Bari, Italy.
| | | | | |
Collapse
|