1
|
de la Fuente M, Mendizabal I, Han MV, Yi SV, Alvarez-Ponce D. Asymmetrical Evolution of Promoter Methylation of Mammalian Genes after Duplication. Mol Biol Evol 2024; 41:msae259. [PMID: 39686539 PMCID: PMC11683416 DOI: 10.1093/molbev/msae259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/22/2024] [Accepted: 12/09/2024] [Indexed: 12/18/2024] Open
Abstract
Even though gene duplication is a key source of new genes and evolutionary innovation, it is unclear how duplicates survive the period immediately following gene duplication, in which both copies are functionally redundant. In the absence of epigenetic silencing, the abundance of the gene product would double after gene duplication, which would often have deleterious effects. However, recent duplicates exhibit low expression levels, which could be at least partially explained by high levels of promoter methylation. What evolutionary paths lead to duplicate hypermethylation, and does it affect both duplicates or only one? Here, we compare levels of promoter methylation in 10 human and 16 mouse tissues, between singletons and duplicates and among human-mouse orthologs of different kinds (one-to-one, one-to-many, many-to-one, and many-to-many). Our results indicate that: (i) on average, duplicates are more methylated than singletons in mouse, but less methylated than singletons in human, (ii) recently duplicated genes tend to exhibit high levels of promoter methylation, (iii) genes that undergo duplication tend to be highly methylated before duplication, (iv) after gene duplication, one of the copies (the daughter copy, i.e. the one that relocates to a new genomic context) tends to undergo an additional increase in promoter methylation, whereas the other (the parental copy, which remains in the original genomic location) tends to retain preduplication methylation levels, and (v) daughter copies tend to be lowly expressed. These observations support a model in which daughter copies are repressed via promoter hypermethylation and can thus survive the filter of purifying selection until both copies diverge functionally.
Collapse
Affiliation(s)
- Mercedes de la Fuente
- Departamento de Ciencias y Técnicas Fisicoquímicas, Facultad de Ciencias, Universidad Nacional de Educación a Distancia (UNED), Madrid 28232, Spain
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), 48160 Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Translational Prostate Cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute, Derio, Spain
| | - Mira V Han
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Soojin V Yi
- Department of Ecology, Evolution, and Marine Biology, University of California, Santa Barbara, CA, USA
- Department of Molecular, Cellular and Developmental Biology, University of California, Santa Barbara, CA, USA
- Neuroscience Research Institute, University of California, Santa Barbara, CA, USA
| | | |
Collapse
|
2
|
Kenchanmane Raju SK, Lensink M, Kliebenstein DJ, Niederhuth C, Monroe G. Epigenomic divergence correlates with sequence polymorphism in Arabidopsis paralogs. THE NEW PHYTOLOGIST 2023; 240:1292-1304. [PMID: 37614211 DOI: 10.1111/nph.19227] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 07/26/2023] [Indexed: 08/25/2023]
Abstract
Processes affecting rates of sequence polymorphism are fundamental to the evolution of gene duplicates. The relationship between gene activity and sequence polymorphism can influence the likelihood that functionally redundant gene copies are co-maintained in stable evolutionary equilibria vs other outcomes such as neofunctionalization. Here, we investigate genic variation in epigenome-associated polymorphism rates in Arabidopsis thaliana and consider whether these affect the evolution of gene duplicates. We compared the frequency of sequence polymorphism and patterns of genetic differentiation between genes classified by exon methylation patterns: unmethylated (unM), gene-body methylated (gbM), and transposon-like methylated (teM) states, which reflect divergence in gene expression. We found that the frequency of polymorphism was higher in teM (transcriptionally repressed, tissue-specific) genes and lower in gbM (active, constitutively expressed) genes. Comparisons of gene duplicates were largely consistent with genome-wide patterns - gene copies that exhibit teM accumulate more variation, evolve faster, and are in chromatin states associated with reduced DNA repair. This relationship between expression, the epigenome, and polymorphism may lead to the breakdown of equilibrium states that would otherwise maintain genetic redundancies. Epigenome-mediated polymorphism rate variation may facilitate the evolution of novel gene functions in duplicate paralogs maintained over evolutionary time.
Collapse
Affiliation(s)
| | - Mariele Lensink
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | | | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| | - Grey Monroe
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| |
Collapse
|
3
|
Shew CJ, Carmona-Mora P, Soto DC, Mastoras M, Roberts E, Rosas J, Jagannathan D, Kaya G, O'Geen H, Dennis MY. Diverse Molecular Mechanisms Contribute to Differential Expression of Human Duplicated Genes. Mol Biol Evol 2021; 38:3060-3077. [PMID: 34009325 PMCID: PMC8321529 DOI: 10.1093/molbev/msab131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 04/08/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022] Open
Abstract
Emerging evidence links genes within human-specific segmental duplications (HSDs) to traits and diseases unique to our species. Strikingly, despite being nearly identical by sequence (>98.5%), paralogous HSD genes are differentially expressed across human cell and tissue types, though the underlying mechanisms have not been examined. We compared cross-tissue mRNA levels of 75 HSD genes from 30 families between humans and chimpanzees and found expression patterns consistent with relaxed selection on or neofunctionalization of derived paralogs. In general, ancestral paralogs exhibited greatest expression conservation with chimpanzee orthologs, though exceptions suggest certain derived paralogs may retain or supplant ancestral functions. Concordantly, analysis of long-read isoform sequencing data sets from diverse human tissues and cell lines found that about half of derived paralogs exhibited globally lower expression. To understand mechanisms underlying these differences, we leveraged data from human lymphoblastoid cell lines (LCLs) and found no relationship between paralogous expression divergence and post-transcriptional regulation, sequence divergence, or copy-number variation. Considering cis-regulation, we reanalyzed ENCODE data and recovered hundreds of previously unidentified candidate CREs in HSDs. We also generated large-insert ChIP-sequencing data for active chromatin features in an LCL to better distinguish paralogous regions. Some duplicated CREs were sufficient to drive differential reporter activity, suggesting they may contribute to divergent cis-regulation of paralogous genes. This work provides evidence that cis-regulatory divergence contributes to novel expression patterns of recent gene duplicates in humans.
Collapse
Affiliation(s)
- Colin J Shew
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Paulina Carmona-Mora
- Genome Center, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA
| | - Daniela C Soto
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA
| | - Mira Mastoras
- Genome Center, University of California Davis, CA, USA
| | | | - Joseph Rosas
- Genome Center, University of California Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA
| | | | - Gulhan Kaya
- Genome Center, University of California Davis, CA, USA
| | | | - Megan Y Dennis
- Genome Center, University of California Davis, CA, USA.,Integrative Genetics and Genomics Graduate Group, University of California Davis, CA, USA.,MIND Institute, University of California, Davis, CA, USA.,Autism Research Training Program, University of California, Davis, CA, USA.,Postbaccalaureate Research Education Program, University of California, Davis, CA, USA.,Department of Biochemistry & Molecular Medicine, University of California, Davis, CA, USA
| |
Collapse
|
4
|
Divergent DNA Methylation Provides Insights into the Evolution of Duplicate Genes in Zebrafish. G3-GENES GENOMES GENETICS 2016; 6:3581-3591. [PMID: 27646705 PMCID: PMC5100857 DOI: 10.1534/g3.116.032243] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The evolutionary mechanism, fate and function of duplicate genes in various taxa have been widely studied; however, the mechanism underlying the maintenance and divergence of duplicate genes in Danio rerio remains largely unexplored. Whether and how the divergence of DNA methylation between duplicate pairs is associated with gene expression and evolutionary time are poorly understood. In this study, by analyzing bisulfite sequencing (BS-seq) and RNA-seq datasets from public data, we demonstrated that DNA methylation played a critical role in duplicate gene evolution in zebrafish. Initially, we found promoter methylation of duplicate genes generally decreased with evolutionary time as measured by synonymous substitution rate between paralogous duplicates (Ks). Importantly, promoter methylation of duplicate genes was negatively correlated with gene expression. Interestingly, for 665 duplicate gene pairs, one gene was consistently promoter methylated, while the other was unmethylated across nine different datasets we studied. Moreover, one motif enriched in promoter methylated duplicate genes tended to be bound by the transcription repression factor FOXD3, whereas a motif enriched in the promoter unmethylated sequences interacted with the transcription activator Sp1, indicating a complex interaction between the genomic environment and epigenome. Besides, body-methylated genes showed longer length than body-unmethylated genes. Overall, our results suggest that DNA methylation is highly important in the differential expression and evolution of duplicate genes in zebrafish.
Collapse
|
5
|
Enhanced evolution by stochastically variable modification of epigenetic marks in the early embryo. Proc Natl Acad Sci U S A 2014; 111:6353-8. [PMID: 24733912 DOI: 10.1073/pnas.1402585111] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Evolution by gene duplication is generally accepted as one of the crucial driving forces for the gain of new complexity and functions, but the formation of pseudogenes remains a problem for this mechanism. Here we expand on earlier ideas that epigenetic modifications can drive neo- and subfunctionalization in evolution by gene duplication. We explore the effects of stochastic epigenetic modifications on the evolution (and thus development) of complex organisms in a constant environment. Modeling is done both using a modified genetic drift analytical treatment and computer simulations, which were found to agree. A transposon silencing model is also explored. Some key assumptions made include (i) stochastic, incomplete removal (or addition) of repressive epigenetic marks takes place during a window(s) of opportunity in the zygote and early embryo; (ii) there is no statistical variation of the marks after the window closes; and (iii) the genes affected are sensitive to dosage. Our genetic drift treatment takes into account that after gene duplication the prevailing case upon which selection operates is a duplicate/singlet heterozygote; to the best of our knowledge, this has not been considered in previous treatments. We conclude from our modeling that stochastic epigenetic modifications, with rates consistent with experimental observation, can both increase the rate of gene fixation and decrease pseudogenization, thus dramatically improving the efficacy of evolution by gene duplication. We also find that a transposon silencing model is advantageous for fixation of recessive genes in diploid organisms, especially with large effective population sizes.
Collapse
|
6
|
Yampolsky LY, Bouzinier MA. Faster evolving Drosophila paralogs lose expression rate and ubiquity and accumulate more non-synonymous SNPs. Biol Direct 2014; 9:2. [PMID: 24438455 PMCID: PMC3906896 DOI: 10.1186/1745-6150-9-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Accepted: 01/07/2014] [Indexed: 12/31/2022] Open
Abstract
Background Duplicated genes can indefinately persist in genomes if either both copies retain the original function due to dosage benefit (gene conservation), or one of the copies assumes a novel function (neofunctionalization), or both copies become required to perform the function previously accomplished by a single copy (subfunctionalization), or through a combination of these mechanisms. Different models of duplication retention imply different predictions about substitution rates in the coding portion of paralogs and about asymmetry of these rates. Results We analyse sequence evolution asymmetry in paralogs present in 12 Drosophila genomes using the nearest non-duplicated orthologous outgroup as a reference. Those paralogs present in D. melanogaster are analysed in conjunction with the asymmetry of expression rate and ubiquity and of segregating non-synonymous polymorphisms in the same paralogs. Paralogs accumulate substitutions, on average, faster than their nearest singleton orthologs. The distribution of paralogs’ substitution rate asymmetry is overdispersed relative to that of orthologous clades, containing disproportionally more unusually symmetric and unusually asymmetric clades. We show that paralogs are more asymmetric in: a) clades orthologous to highly constrained singleton genes; b) genes with high expression level; c) genes with ubiquitous expression and d) non-tandem duplications. We further demonstrate that, in each asymmetrically evolving pair of paralogs, the faster evolving member of the pair tends to have lower average expression rate, lower expression uniformity and higher frequency of non-synonymous SNPs than its slower evolving counterpart. Conclusions Our findings are consistent with the hypothesis that many duplications in Drosophila are retained despite stabilising selection being more relaxed in one of the paralogs than in the other, suggesting a widespread unfinished pseudogenization. This phenomenon is likely to make detection of neo- and subfunctionalization signatures difficult, as these models of duplication retention also predict asymmetries in substitution rates and expression profiles. Reviewers This article has been reviewed by Dr. Jia Zeng (nominated by Dr. I. King Jordan), Dr. Fyodor Kondrashov and Dr. Yuri Wolf.
Collapse
Affiliation(s)
- Lev Y Yampolsky
- Department of Biological sciences, East Tennessee State University, Johnson City, TN 37614, USA.
| | | |
Collapse
|
7
|
Perrin C, Lepesant JMJ, Roger E, Duval D, Fneich S, Thuillier V, Alliene JF, Mitta G, Grunau C, Cosseau C. Schistosoma mansoni mucin gene (SmPoMuc) expression: epigenetic control to shape adaptation to a new host. PLoS Pathog 2013; 9:e1003571. [PMID: 24009504 PMCID: PMC3757033 DOI: 10.1371/journal.ppat.1003571] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 06/27/2013] [Indexed: 11/28/2022] Open
Abstract
The digenetic trematode Schistosoma mansoni is a human parasite that uses the mollusc Biomphalaria glabrata as intermediate host. Specific S. mansoni strains can infect efficiently only certain B. glabrata strains (compatible strain) while others are incompatible. Strain-specific differences in transcription of a conserved family of polymorphic mucins (SmPoMucs) in S. mansoni are the principle determinants for this compatibility. In the present study, we investigated the bases of the control of SmPoMuc expression that evolved to evade B. glabrata diversified antigen recognition molecules. We compared the DNA sequences and chromatin structure of SmPoMuc promoters of two S. mansoni strains that are either compatible (C) or incompatible (IC) with a reference snail host. We reveal that although sequence differences are observed between active promoter regions of SmPoMuc genes, the sequences of the promoters are not diverse and are conserved between IC and C strains, suggesting that genetics alone cannot explain the evolution of compatibility polymorphism. In contrast, promoters carry epigenetic marks that are significantly different between the C and IC strains. Moreover, we show that modifications of the structure of the chromatin of the parasite modify transcription of SmPoMuc in the IC strain compared to the C strain and correlate with the presence of additional combinations of SmPoMuc transcripts only observed in the IC phenotype. Our results indicate that transcription polymorphism of a gene family that is responsible for an important adaptive trait of the parasite is epigenetically encoded. These strain-specific epigenetic marks are heritable, but can change while the underlying genetic information remains stable. This suggests that epigenetic changes may be important for the early steps in the adaptation of pathogens to new hosts, and might be an initial step in adaptive evolution in general. Schistosoma mansoni is a parasitic worm and agent of a disease that causes a considerable economic burden in African and South American countries. The propagation of the parasite requires passage through a freshwater snail of Biomphalaria genus. In the field, actually very few snails are infected. This is due to the fact that specific strains of the parasite can infect only specific strains of the snail. Comparative studies have shown that this so-called compatibility is based on the expression of a family of genes that are called SmPoMucs. We have shown previously that all parasites strains possess the repertoire of all SmPoMuc genes but every strain and even every individual parasite expresses only a subset. These differences could be due to DNA sequence differences in the regions that control gene expression, but here we show that these regions are nearly identical. Instead, the chromatin structure shows strain-specific characteristics. This means that the parasite can adapt to different snail strains simply by changing its chromatin structure and not necessarily the DNA sequence. If this holds true for other parasites, then we have to rethink the way parasite evolution is currently imagined but this also provides a new potential entry point to control the spread of diseases.
Collapse
Affiliation(s)
- Cecile Perrin
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Julie M. J. Lepesant
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Emmanuel Roger
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS UMR 8204, Institut Pasteur de Lille, University Lille Nord de France, Lille, France
| | - David Duval
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Sara Fneich
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Virginie Thuillier
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Jean-Francois Alliene
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Guillaume Mitta
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Christoph Grunau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
| | - Celine Cosseau
- Université de Perpignan Via Domitia, Perpignan, France
- CNRS, UMR 5244, Ecologie et Evolution des Interactions (2EI), Perpignan, France
- * E-mail:
| |
Collapse
|
8
|
Abstract
Pseudogenes are ubiquitous and abundant in genomes. Pseudogenes were once called "genomic fossils" and treated as "junk DNA" several years. Nevertheless, it has been recognized that some pseudogenes play essential roles in gene regulation of their parent genes, and many pseudogenes are transcribed into RNA. Pseudogene transcripts may also form small interfering RNA or decrease cellular miRNA concentration. Thus, pseudogenes regulate tumor suppressors and oncogenes. Their essential functions draw the attention of our research group in my current work on heat shock protein 90: a chaperone of oncogenes. The paper reviews our current knowledge on pseudogenes and evaluates preliminary results of the chaperone data. Current efforts to understand pseudogenes interactions help to understand the functions of a genome.
Collapse
Affiliation(s)
- Yusuf Tutar
- Department of Biochemistry, Faculty of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
- Department of Chemistry, Faculty of Science, Cumhuriyet University, 58140 Sivas, Turkey
- CUTFAM Research Center, Faculty of Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| |
Collapse
|
9
|
Chang AYF, Liao BY. DNA methylation rebalances gene dosage after mammalian gene duplications. Mol Biol Evol 2011; 29:133-44. [PMID: 21821837 DOI: 10.1093/molbev/msr174] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although gene duplication plays a major role in organismal evolution, it may also lead to gene dosage imbalance, thereby having an immediate adverse effect on an organism's fitness. Investigating the evolution of the expression patterns of genes that duplicated after the divergence of rodents and primates, we confirm that adaptive evolution has been involved in dosage rebalance after gene duplication. To understand mechanisms underlying this process, we examined 1) microRNA (miRNA)-mediated gene regulation, 2) cis-regulatory sequence modifications, and 3) DNA methylation. Neither miRNA-mediated regulation nor cis-regulatory changes was found to be associated with expression reduction of duplicate genes. By contrast, duplicate genes, especially lowly expressed copies, were heavily methylated in the upstream region. However, for duplicate genes encoding proteins that are members of macromolecular complexes, heavy methylation in the genic region was not consistently observed. This result held after controlling potential confounding factors, such as enrichment in functional categories. Our results suggest that during mammalian evolution, DNA methylation plays a dominant role in dosage rebalance after gene duplication by inhibiting transcription initiation of duplicate genes.
Collapse
Affiliation(s)
- Andrew Ying-Fei Chang
- Division of Biostatistics & Bioinformatics, Institute of Population Health Sciences, National Health Research Institutes, Taiwan, Republic of China
| | | |
Collapse
|
10
|
Shanker A, Marincola FM. Cooperativity of adaptive and innate immunity: implications for cancer therapy. Cancer Immunol Immunother 2011; 60:1061-74. [PMID: 21656157 PMCID: PMC3508514 DOI: 10.1007/s00262-011-1053-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 05/26/2011] [Indexed: 02/07/2023]
Abstract
The dichotomy of immunology into innate and adaptive immunity has created conceptual barriers in appreciating the intrinsic two-way interaction between immune cells. An emerging body of evidence in various models of immune rejection, including cancer, indicates an indispensable regulation of innate effector functions by adaptive immune cells. This bidirectional cooperativity in innate and adaptive immune functions has broad implications for immune responses in general and for regulating the tumor-associated inflammation that overrides the protective antitumor immunity. Mechanistic understanding of this two-way immune cross-talk could provide insights into novel strategies for designing better immunotherapy approaches against cancer and other diseases that normally defy immune control.
Collapse
Affiliation(s)
- Anil Shanker
- Laboratory of Lymphocyte Function, Department of Biochemistry and Cancer Biology, School of Medicine, Meharry Medical College, Nashville, TN 37208, USA.
| | | |
Collapse
|
11
|
CpG island clusters and pro-epigenetic selection for CpGs in protein-coding exons of HOX and other transcription factors. Proc Natl Acad Sci U S A 2010; 107:15485-90. [PMID: 20716685 DOI: 10.1073/pnas.1010506107] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CpG dinucleotides contribute to epigenetic mechanisms by being the only site for DNA methylation in mammalian somatic cells. They are also mutation hotspots and approximately 5-fold depleted genome-wide. We report here a study focused on CpG sites in the coding regions of Hox and other transcription factor genes, comparing methylated genomes of Homo sapiens, Mus musculus, and Danio rerio with nonmethylated genomes of Drosophila melanogaster and Caenorhabditis elegans. We analyzed 4-fold degenerate, synonymous codons with the potential for CpG. That is, we studied "silent" changes that do not affect protein products but could damage epigenetic marking. We find that DNA-binding transcription factors and other developmentally relevant genes show, only in methylated genomes, a bimodal distribution of CpG usage. Several genetic code-based tests indicate, again for methylated genomes only, that the frequency of silent CpGs in Hox genes is much greater than expectation. Also informative are NCG-GNN and NCC-GNN codon doublets, for which an unusually high rate of G to C and C to G transversions was observed at the third (silent) position of the first codon. Together these results are interpreted as evidence for strong "pro-epigenetic" selection acting to preserve CpG sites in coding regions of many genes controlling development. We also report that DNA-binding transcription factors and developmentally important genes are dramatically overrepresented in or near clusters of three or more CpG islands, suggesting a possible relationship between evolutionary preservation of CpG dinucleotides in both coding regions and CpG islands.
Collapse
|
12
|
Jablonka E, Raz G. Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. QUARTERLY REVIEW OF BIOLOGY 2009; 84:131-76. [PMID: 19606595 DOI: 10.1086/598822] [Citation(s) in RCA: 836] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
This review describes new developments in the study of transgenerational epigenetic inheritance, a component of epigenetics. We start by examining the basic concepts of the field and the mechanisms that underlie epigenetic inheritance. We present a comprehensive review of transgenerational cellular epigenetic inheritance among different taxa in the form of a table, and discuss the data contained therein. The analysis of these data shows that epigenetic inheritance is ubiquitous and suggests lines of research that go beyond present approaches to the subject. We conclude by exploring some of the consequences of epigenetic inheritance for the study of evolution, while also pointing to the importance of recognizing and understanding epigenetic inheritance for practical and theoretical issues in biology.
Collapse
Affiliation(s)
- Eva Jablonka
- The Cohn Institute for the History and Philosophy of Science and Ideas, Tel-Aviv University, Tel-Aviv 69978, Israel.
| | | |
Collapse
|
13
|
Abstract
AbstractThe commentaries onEvolution in Four Dimensionsreflect views ranging from total adherence to gene-centered neo-Darwinism, to the acceptance of non-genetic and Lamarckian processes in evolution. We maintain that genetic, epigenetic, behavioral, and cultural variations have all been significant, and that the developmental aspects of heredity and evolution are an important bridge that can unite seemingly conflicting research programs and different disciplines.
Collapse
|
14
|
Xue SA, Griffin BE. Complexities associated with expression of Epstein-Barr virus (EBV) lytic origins of DNA replication. Nucleic Acids Res 2007; 35:3391-406. [PMID: 17478522 PMCID: PMC1904260 DOI: 10.1093/nar/gkm170] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
EBV has two lytic origins (oriLyt) of DNA replication lying at divergent sites on the viral genome within a duplicated sequence (DS). The latter contains potential hairpin loops, ‘hinge’ elements and the promoters for transcripts from viral genes BHLF1 and LF3. These genes themselves consist largely of 125 and 102 bp repetitive sequences, respectively, and encode basic proteins. We have examined these genomic regions in detail in attempts to understand why lytic replication—necessary for virus survival—is so inefficient, and to identify controlling elements. Our studies uncovered a diverse family of promoters (P) for BHLF1 and LF3, only one pair of which (P1) proved sensitive to chemical inducing agents. The others (P2–P3/4), abutting the replication ‘core’ origin elements in DS and extending into 5′-unique sequences, may play roles in the maintenance of viral latency. We further identified a family of overlapping small complementary-strand RNAs that transverse the replication ‘core’ origin elements in a manner suggesting a role for them as ‘antisense’ species and/or DNA replication primers. Our data are discussed in terms of alternative lytic replication models. We suggest our findings might prove useful in seeking better control over viral lytic replication and devising strategies for therapy.
Collapse
MESH Headings
- Animals
- Cell Line
- DNA Replication
- DNA, Viral/biosynthesis
- Gene Expression Regulation, Viral
- Herpesvirus 4, Human/genetics
- Herpesvirus 4, Human/metabolism
- Herpesvirus 4, Human/physiology
- Humans
- Nuclease Protection Assays
- Promoter Regions, Genetic
- RNA, Antisense/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/chemistry
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- Replication Origin
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Initiation Site
- Transcription, Genetic
- Viral Proteins/biosynthesis
- Viral Proteins/genetics
- Virus Replication
Collapse
Affiliation(s)
| | - Beverly E. Griffin
- *To whom correspondence should be addressed. Tel: +44-207-594-3670; Fax: +44-207-410-1037;
| |
Collapse
|
15
|
Casneuf T, De Bodt S, Raes J, Maere S, Van de Peer Y. Nonrandom divergence of gene expression following gene and genome duplications in the flowering plant Arabidopsis thaliana. Genome Biol 2006; 7:R13. [PMID: 16507168 PMCID: PMC1431724 DOI: 10.1186/gb-2006-7-2-r13] [Citation(s) in RCA: 147] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Revised: 12/20/2005] [Accepted: 01/25/2006] [Indexed: 12/23/2022] Open
Abstract
Analysis of expression data of duplicated genes in Arabidopsis thaliana shows that the mode of duplication, the time since duplication and the function of the duplicated genes play a role in the divergence of their expression. Background Genome analyses have revealed that gene duplication in plants is rampant. Furthermore, many of the duplicated genes seem to have been created through ancient genome-wide duplication events. Recently, we have shown that gene loss is strikingly different for large- and small-scale duplication events and highly biased towards the functional class to which a gene belongs. Here, we study the expression divergence of genes that were created during large- and small-scale gene duplication events by means of microarray data and investigate both the influence of the origin (mode of duplication) and the function of the duplicated genes on expression divergence. Results Duplicates that have been created by large-scale duplication events and that can still be found in duplicated segments have expression patterns that are more correlated than those that were created by small-scale duplications or those that no longer lie in duplicated segments. Moreover, the former tend to have highly redundant or overlapping expression patterns and are mostly expressed in the same tissues, while the latter show asymmetric divergence. In addition, a strong bias in divergence of gene expression was observed towards gene function and the biological process genes are involved in. Conclusion By using microarray expression data for Arabidopsis thaliana, we show that the mode of duplication, the function of the genes involved, and the time since duplication play important roles in the divergence of gene expression and, therefore, in the functional divergence of genes after duplication.
Collapse
Affiliation(s)
- Tineke Casneuf
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, Technologiepark 927, B-9052 Ghent, Belgium.
| | | | | | | | | |
Collapse
|
16
|
Rodin SN, Parkhomchuk DV, Rodin AS, Holmquist GP, Riggs AD. Repositioning-dependent fate of duplicate genes. DNA Cell Biol 2006; 24:529-42. [PMID: 16153154 DOI: 10.1089/dna.2005.24.529] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gene duplication is the main source of evolutionary novelties. However, the problem with duplicates is that the purifying selection overlooks deleterious mutations in the redundant sequence, which therefore, instead of gaining a new function, often degrades into a functionless pseudogene. This risk of functional loss instead of gain is much higher for small populations of higher organisms with a slow and complex development. We propose that it is the epigenetic tissue/stage-complementary silencing of duplicates that makes them exposable to the purifying selection, thus saving them from pseudogenization and opening the way towards new function(s). Our genome-wide analyses of gene duplicates in several eukaryotic species combined with the phylogenetic comparison of vertebrate alpha- and beta-globin gene clusters strongly support this epigenetic complementation (EC) model. The distinctive condition for a new duplicate to survive by the EC mechanism seems to be its repositioning to an ectopic site, which is accompanied by changes in the rate and direction of mutagenesis. The most distinguished in this respect is the human genome. In this review, we extend and discuss the data on the EC- and repositioning-dependent fate of gene duplicates with the special emphasis on the problem of detecting brief postduplication period of adaptive evolution driven by positive selection. Accordingly, we propose a new CpG-focused measure of selection that is insensitive to translocation-caused biases in mutagenesis.
Collapse
Affiliation(s)
- Sergei N Rodin
- Theoretical Biology Department, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA.
| | | | | | | | | |
Collapse
|